High-calorie diets uncouple hypothalamic oxytocin neurons from a gut-to-brain satiation pathway via κ-opioid signaling
- Order Assays
Oxytocin-expressing paraventricular hypothalamic neurons (PVNOT neurons) integrate afferent signals from the gut, including cholecystokinin (CCK), to adjust whole-body energy homeostasis. However, the molecular underpinnings by which PVNOT neurons orchestrate gut-to-brain feeding control remain unclear. Here, we show that mice undergoing selective ablation of PVNOT neurons fail to reduce food intake in response to CCK and develop hyperphagic obesity on a chow diet. Notably, exposing wild-type mice to a high-fat/high-sugar (HFHS) diet recapitulates this insensitivity toward CCK, which is linked to diet-induced transcriptional and electrophysiological aberrations specifically in PVNOT neurons. Restoring OT pathways in diet-induced obese (DIO) mice via chemogenetics or polypharmacology sufficiently re-establishes CCK's anorexigenic effects. Last, by single-cell profiling, we identify a specialized PVNOT neuronal subpopulation with increased κ-opioid signaling under an HFHS diet, which restrains their CCK-evoked activation. In sum, we document a (patho)mechanism by which PVNOT signaling uncouples a gut-brain satiation pathway under obesogenic conditions.
Export PNG
Views: 20
Created: 2nd Dec 2024 at 13:22
This item has not yet been tagged.
Related items
Projects: Published Datasets, Unpublished Datasets
Institutions: Helmholtz Munich
Please visit the 'Related items' tab within the profile page to explore associated studies in more detail.
Projects: Published Datasets, Unpublished Datasets
Institutions: LMU Klinikum
Research Data Manager
Projects: Published Datasets, Unpublished Datasets
Institutions: Helmholtz Munich
Please visit the 'Related items' tab within the profile page to explore associated studies in more detail.
This project serves as a centralized repository for omics datasets published by research groups within the SyNergy Cluster. It encompasses investigations such as proteomics and transcriptomics, which are further divided into individual studies led by SyNergy members. Each study is linked to relevant publications, assays and data files (with links to external repositories).
To explore investigations and their associated studies in more detail, please visit the 'Related items' tab on the Project ...
Public web page: Not specified
Organisms: Mus musculus, Rattus norvegicus, Homo sapiens, Macaca mulatta, Sus scrofa, Danio rerio
Submitter: Rainer Malik
Studies: A genome-wide in vivo CRISPR screen identifies essential regulators of T..., Adult neural stem cell activation in mice is regulated by the day/night ..., Diet triggers specific responses of hypothalamic astrocytes in time and ..., Direct neuronal reprogramming of NDUFS4 patient cells identifies the unf..., Distinct molecular profiles of skull bone marrow in health and neurologi..., Early adaptive immune activation detected in monozygotic twins with prod..., Heterogeneity of neurons reprogrammed from spinal cord astrocytes by the..., High-calorie diets uncouple hypothalamic oxytocin neurons from a gut-to-..., Histone Deacetylase 9 Activates IKK to Regulate Atherosclerotic Plaque V..., Innate Immune Pathways Promote Oligodendrocyte Progenitor Cell Recruitme..., Innate immune memory after brain injury drives inflammatory cardiac dysf..., MicroRNAs from extracellular vesicles as a signature for Parkinson's dis..., Microglia in white matter aging, Molecular diversity of diencephalic astrocytes reveals adult astrogenesi..., Multiomic ALS signatures highlight subclusters and sex differences sugge..., Multi‐omic landscaping of human midbrains identifies disease‐relevant mo..., Myelin degeneration in leucodystrophies, Oligodendrocytes in AD models, Oligodendrocytes in white matter aging, Parkinson's disease motor symptoms rescue by CRISPRa‐reprogramming astro..., Peripheral expression of brain-penetrant progranulin rescues pathologies..., Phagocyte-mediated synapse removal in cortical neuroinflammation is prom..., Shared inflammatory glial cell signature after stab wound injury, reveal..., Skin and gut imprinted helper T cell subsets exhibit distinct functional..., Spatial Transcriptomics-correlated Electron Microscopy maps transcriptio..., Spatial centrosome proteome of human neural cells uncovers disease-relev..., T cells modulate the microglial response to brain ischemia, Twin study identifies early immunological and metabolic dysregulation of...
Assays: Expression profiling: Bulk RNA-seq (human), Expression profiling: Bulk RNA-seq (human), Expression profiling: Bulk RNA-seq (human), Expression profiling: Bulk RNA-seq (human) + smallRNA-seq (human), Expression profiling: Bulk RNA-seq (mouse), Expression profiling: Bulk RNA-seq (mouse), Expression profiling: Bulk RNA-seq (mouse), Expression profiling: Bulk RNA-seq (mouse), Expression profiling: Bulk RNA-seq (mouse), Expression profiling: Bulk RNA-seq (mouse), Expression profiling: Bulk RNA-seq (mouse), Expression profiling: Bulk RNA-seq (mouse), Expression profiling: Bulk RNA-seq (mouse), Expression profiling: Bulk RNA-seq (mouse), Expression profiling: Bulk RNA-seq (mouse), Expression profiling: Bulk RNA-seq (rat), Expression profiling: MERFISH Spatial Transcriptomics (mouse), Expression profiling: Microarray (zebrafish), Expression profiling: RiboTag-mRNA-seq (mouse), Expression profiling: Small RNA-seq (human), Expression profiling: Spatial Transcriptomics (mouse), Expression profiling: Spatial Transcriptomics correlated Electron Micros..., Expression profiling: scRNA-seq (human), Expression profiling: scRNA-seq (human), Expression profiling: scRNA-seq (human), Expression profiling: scRNA-seq (human), Expression profiling: scRNA-seq (human) (Day 20), Expression profiling: scRNA-seq (human) (Day 5), Expression profiling: scRNA-seq (mouse), Expression profiling: scRNA-seq (mouse), Expression profiling: scRNA-seq (mouse), Expression profiling: scRNA-seq (mouse), Expression profiling: scRNA-seq (mouse), Expression profiling: scRNA-seq (mouse), Expression profiling: scRNA-seq (mouse), Expression profiling: scRNA-seq (mouse), Expression profiling: scRNA-seq (mouse), Expression profiling: scRNA-seq (mouse), Expression profiling: scRNA-seq (mouse), Expression profiling: scRNA-seq (mouse), Expression profiling: scRNA-seq (mouse), Expression profiling: scRNA-seq (mouse) + Bulk RNA-seq (mouse), Expression profiling: small RNA-seq (human), Expression profiling: small RNA-seq (mouse), Genome binding/occupancy profiling: Bulk ATAC-seq (mouse), Genome binding/occupancy profiling: Bulk ATAC-seq (mouse), Genome binding/occupancy profiling: CUT&Tag sequencing (mouse), Genome binding/occupancy profiling: snATAC-seq (mouse), Genome wide (GW) and validation CRISPR screens (rat)
Snapshots: No snapshots
Submitter: Aditi Methi
Assay type: Transcriptomics
Technology type: Sequencing
Investigation: Transcriptomics (Published)
Organisms: Mus musculus
SOPs: No SOPs
Data files: Gene expression profiles at the single nuclei l...
Snapshots: No snapshots
Submitter: Aditi Methi
Assay type: Transcriptomics
Technology type: Sequencing
Investigation: Transcriptomics (Published)
Organisms: Mus musculus
SOPs: No SOPs
Data files: Effect of CCK-8s injection (20 ug/kg BW i.p.) o...
Snapshots: No snapshots
We treated male Oxt-ires-Cre;RiboTag mice with either vehicle or CCK, collected hypothalami 2h post injection, pooled 2-3 tissues per sample, and affinity purified conditionally HA-tagged ribosomes (incl translating mRNA) specifically from oxytocin neurons. We then performed gene expression profiling analysis using data obtained from RNA-seq of immunoprecipitates versus inputs (n=4 per group) from standard chow diet fed mice and inputs only from high-fat/high-sugar diet fed mice (n=4 per group). ...
Creators: None
Submitter: Aditi Methi
Investigations: Transcriptomics (Published)
Hypothalamic oxytocin neurons from Oxt-ires-Cre;CAG-Sun1sfGFP mice were isolated by Fluorescence-activated nuclei sorting (FANS) according to the presence or absence of sfGFP signal and analyzed using snRNAseq2.
Creators: None
Submitter: Aditi Methi
Investigations: Transcriptomics (Published)
Abstract (Expand)
Authors: Tim Gruber, Franziska Lechner, Cahuê Murat, Raian E Contreras, Eva Sanchez-Quant, Viktorian Miok, Konstantinos Makris, Ophélia Le Thuc, Ismael González-García, Elena García-Clave, Ferdinand Althammer, Quirin Krabichler, Lisa M DeCamp, Russell G Jones, Dominik Lutter, Rhiannan H Williams, Paul T Pfluger, Timo D Müller, Stephen C Woods, John Andrew Pospisilik, Celia P Martinez-Jimenez, Matthias H Tschöp, Valery Grinevich, Cristina Garcia-Caceres
Date Published: 31st Oct 2023
Publication Type: Journal