- Order Assays
The centrosome acts as the cell’s microtubule organizing center, supporting cell division and the extension of cilia and neurites. Newly born neurons require the microtubule organizing activity of centrosomes to migrate away from their birthplace at the ventricle. O’Neill et al. analyzed the centrosome proteome of human induced pluripotent stem cell–derived neural stem cells and neurons. The neural centrosome proteome contains a variety of RNA-binding/modifying proteins, including an RNA-splicing factor mutation that is linked to periventricular heterotopia.
Export PNG
Views: 34
Created: 14th Oct 2024 at 12:55
This item has not yet been tagged.
Related items
Projects: SyNergy - Published Datasets
Institutions: Helmholtz Munich, LMU
Projects: SyNergy - Published Datasets
Institutions: Klinikum der Universität München
Public web page: Not specified
Organisms: Mus musculus, Rattus norvegicus, Homo sapiens, Macaca mulatta, Sus scrofa, Danio rerio
Submitter: Rainer Malik
Studies: A genome-wide in vivo CRISPR screen identifies essential regulators of T..., Adult neural stem cell activation in mice is regulated by the day/night ..., Direct neuronal reprogramming of NDUFS4 patient cells identifies the unf..., Early adaptive immune activation detected in monozygotic twins with prod..., Heterogeneity of neurons reprogrammed from spinal cord astrocytes by the..., Histone Deacetylase 9 Activates IKK to Regulate Atherosclerotic Plaque V..., Innate Immune Pathways Promote Oligodendrocyte Progenitor Cell Recruitme..., Innate immune memory after brain injury drives inflammatory cardiac dysf..., Microglia in white matter aging, Molecular diversity of diencephalic astrocytes reveals adult astrogenesi..., Multiomic ALS signatures highlight subclusters and sex differences sugge..., Myelin degeneration in leucodystrophies, Oligodendrocytes in AD models, Oligodendrocytes in white matter aging, Parkinson's disease motor symptoms rescue by CRISPRa‐reprogramming astro..., Phagocyte-mediated synapse removal in cortical neuroinflammation is prom..., Shared inflammatory glial cell signature after stab wound injury, reveal..., Skin and gut imprinted helper T cell subsets exhibit distinct functional..., Spatial Transcriptomics-correlated Electron Microscopy maps transcriptio..., Spatial centrosome proteome of human neural cells uncovers disease-relev..., T cells modulate the microglial response to brain ischemia
Assays: Expression profiling: Bulk RNA-seq (human), Expression profiling: Bulk RNA-seq (human), Expression profiling: Bulk RNA-seq (human), Expression profiling: Bulk RNA-seq (mouse), Expression profiling: Bulk RNA-seq (mouse), Expression profiling: Bulk RNA-seq (mouse), Expression profiling: Bulk RNA-seq (mouse), Expression profiling: Bulk RNA-seq (mouse), Expression profiling: Bulk RNA-seq (mouse), Expression profiling: Bulk RNA-seq (mouse), Expression profiling: Bulk RNA-seq (mouse), Expression profiling: Bulk RNA-seq (mouse), Expression profiling: Bulk RNA-seq (rat), Expression profiling: MERFISH Spatial Transcriptomics (mouse), Expression profiling: Microarray (zebrafish), Expression profiling: Spatial Transcriptomics (mouse), Expression profiling: Spatial Transcriptomics correlated Electron Micros..., Expression profiling: scRNA-seq (human), Expression profiling: scRNA-seq (human), Expression profiling: scRNA-seq (human), Expression profiling: scRNA-seq (human) (Day 20), Expression profiling: scRNA-seq (human) (Day 5), Expression profiling: scRNA-seq (mouse), Expression profiling: scRNA-seq (mouse), Expression profiling: scRNA-seq (mouse), Expression profiling: scRNA-seq (mouse), Expression profiling: scRNA-seq (mouse), Expression profiling: scRNA-seq (mouse), Expression profiling: scRNA-seq (mouse), Expression profiling: scRNA-seq (mouse), Expression profiling: scRNA-seq (mouse), Expression profiling: scRNA-seq (mouse), Expression profiling: scRNA-seq (mouse), Expression profiling: small RNA-seq (human), Expression profiling: small RNA-seq (mouse), Genome binding/occupancy profiling: Bulk ATAC-seq (mouse), Genome binding/occupancy profiling: Bulk ATAC-seq (mouse), Genome binding/occupancy profiling: CUT&Tag sequencing (mouse), Genome binding/occupancy profiling: snATAC-seq (mouse), Genome wide (GW) and validation CRISPR screens (rat)
Snapshots: No snapshots
Submitter: Aditi Methi
Assay type: Transcriptomics
Technology type: Sequencing
Investigation: Transcriptomics
Organisms: Mus musculus
SOPs: No SOPs
Data files: Spatial centrosome proteome of human neural cel...
Snapshots: No snapshots
RNA from FACS sorted electroporated (GFP+) cells was isolated in Extraction Buffer (Arcturus), heated to 42 and stored at -80 cDNA was synthesized from 300 pg of total RNA using SMART‐Seq v4 Ultra Low Input RNA Kit for Sequencing (Clontech), according to the manufacturer's instructions. Prior to generating the final library for Illumina sequencing, the Covaris AFA system was used to perform the cDNA shearing, resulting in 200‐ to 500‐bp‐long cDNA fragments. The quality and concentration of the ...
Creators: None
Submitter: Aditi Methi
Investigations: Transcriptomics
Abstract (Expand)
Authors: Adam C O'Neill, Fatma Uzbas, Giulia Antognolli, Florencia Merino, Kalina Draganova, Alex Jäck, Sirui Zhang, Giorgia Pedini, Julia P Schessner, Kimberly Cramer, Aloys Schepers, Fabian Metzger, Miriam Esgleas, Pawel Smialowski, Renzo Guerrini, Sven Falk, Regina Feederle, Saskia Freytag, Zefeng Wang, Melanie Bahlo, Ralf Jungmann, Claudia Bagni, Georg H H Borner, Stephen P Robertson, Stefanie M Hauck, Magdalena Götz
Date Published: 17th Jun 2022
Publication Type: Journal
PubMed ID: 35709258
Citation: Science (New York, N.Y.),376(6599):eabf9088