Heterogeneity of neurons reprogrammed from spinal cord astrocytes by the proneural factors Ascl1 and Neurogenin2
- Order Assays
Astrocytes are a viable source for generating new neurons via direct conversion. However, little is known about the neurogenic cascades triggered in astrocytes from different regions of the CNS. Here, we examine the transcriptome induced by the proneural factors Ascl1 and Neurog2 in spinal cord-derived astrocytes in vitro. Each factor initially elicits different neurogenic programs that later converge to a V2 interneuron-like state. Intriguingly, patch sequencing (patch-seq) shows no overall correlation between functional properties and the transcriptome of the heterogenous induced neurons, except for K-channels. For example, some neurons with fully mature electrophysiological properties still express astrocyte genes, thus calling for careful molecular and functional analysis. Comparing the transcriptomes of spinal cord- and cerebral-cortex-derived astrocytes reveals profound differences, including developmental patterning cues maintained in vitro. These relate to the distinct neuronal identity elicited by Ascl1 and Neurog2 reflecting their developmental functions in subtype specification of the respective CNS region.
Export PNG
Views: 36
Created: 14th Oct 2024 at 13:15
This item has not yet been tagged.
Related items
Projects: SyNergy - Published Datasets
Institutions: Helmholtz Munich, LMU
Projects: SyNergy - Published Datasets
Institutions: Klinikum der Universität München
Public web page: Not specified
Organisms: Mus musculus, Rattus norvegicus, Homo sapiens, Macaca mulatta, Sus scrofa, Danio rerio
Submitter: Rainer Malik
Studies: A genome-wide in vivo CRISPR screen identifies essential regulators of T..., Adult neural stem cell activation in mice is regulated by the day/night ..., Direct neuronal reprogramming of NDUFS4 patient cells identifies the unf..., Early adaptive immune activation detected in monozygotic twins with prod..., Heterogeneity of neurons reprogrammed from spinal cord astrocytes by the..., Histone Deacetylase 9 Activates IKK to Regulate Atherosclerotic Plaque V..., Innate Immune Pathways Promote Oligodendrocyte Progenitor Cell Recruitme..., Innate immune memory after brain injury drives inflammatory cardiac dysf..., Microglia in white matter aging, Molecular diversity of diencephalic astrocytes reveals adult astrogenesi..., Multiomic ALS signatures highlight subclusters and sex differences sugge..., Myelin degeneration in leucodystrophies, Oligodendrocytes in AD models, Oligodendrocytes in white matter aging, Parkinson's disease motor symptoms rescue by CRISPRa‐reprogramming astro..., Phagocyte-mediated synapse removal in cortical neuroinflammation is prom..., Shared inflammatory glial cell signature after stab wound injury, reveal..., Skin and gut imprinted helper T cell subsets exhibit distinct functional..., Spatial Transcriptomics-correlated Electron Microscopy maps transcriptio..., Spatial centrosome proteome of human neural cells uncovers disease-relev..., T cells modulate the microglial response to brain ischemia
Assays: Expression profiling: Bulk RNA-seq (human), Expression profiling: Bulk RNA-seq (human), Expression profiling: Bulk RNA-seq (human), Expression profiling: Bulk RNA-seq (mouse), Expression profiling: Bulk RNA-seq (mouse), Expression profiling: Bulk RNA-seq (mouse), Expression profiling: Bulk RNA-seq (mouse), Expression profiling: Bulk RNA-seq (mouse), Expression profiling: Bulk RNA-seq (mouse), Expression profiling: Bulk RNA-seq (mouse), Expression profiling: Bulk RNA-seq (mouse), Expression profiling: Bulk RNA-seq (mouse), Expression profiling: Bulk RNA-seq (rat), Expression profiling: MERFISH Spatial Transcriptomics (mouse), Expression profiling: Microarray (zebrafish), Expression profiling: Spatial Transcriptomics (mouse), Expression profiling: Spatial Transcriptomics correlated Electron Micros..., Expression profiling: scRNA-seq (human), Expression profiling: scRNA-seq (human), Expression profiling: scRNA-seq (human), Expression profiling: scRNA-seq (human) (Day 20), Expression profiling: scRNA-seq (human) (Day 5), Expression profiling: scRNA-seq (mouse), Expression profiling: scRNA-seq (mouse), Expression profiling: scRNA-seq (mouse), Expression profiling: scRNA-seq (mouse), Expression profiling: scRNA-seq (mouse), Expression profiling: scRNA-seq (mouse), Expression profiling: scRNA-seq (mouse), Expression profiling: scRNA-seq (mouse), Expression profiling: scRNA-seq (mouse), Expression profiling: scRNA-seq (mouse), Expression profiling: scRNA-seq (mouse), Expression profiling: small RNA-seq (human), Expression profiling: small RNA-seq (mouse), Genome binding/occupancy profiling: Bulk ATAC-seq (mouse), Genome binding/occupancy profiling: Bulk ATAC-seq (mouse), Genome binding/occupancy profiling: CUT&Tag sequencing (mouse), Genome binding/occupancy profiling: snATAC-seq (mouse), Genome wide (GW) and validation CRISPR screens (rat)
Snapshots: No snapshots
Submitter: Aditi Methi
Assay type: Transcriptomics
Technology type: Sequencing
Investigation: Transcriptomics
Organisms: Mus musculus
SOPs: No SOPs
Data files: Early induction of neurogenic program by Ascl1E..., Transcriptional profile (RNA-seq) of cultured a...
Snapshots: No snapshots
Submitter: Aditi Methi
Assay type: Transcriptomics
Technology type: Sequencing
Investigation: Transcriptomics
Organisms: Mus musculus
SOPs: No SOPs
Data files: Single cell RNA-seq analysis of astrocyte to ne..., Single cell RNA-seq analysis of reprogrammed ne...
Snapshots: No snapshots
MACS-sorted astrocytes, obtained from postnatal mouse spinalc cord, were transduced in vitro with Ascl1 and Neurog2. Reprogrammed cells were analyzed by electrophysiology ar 3-to-4 weeks, and then single cells were collected and subjected to SmartSeq2 amplification
Creators: None
Submitter: Aditi Methi
Investigations: Transcriptomics
MACS-sorted astrocytes, obtained from postnatal mouse spinal cord, were transduced in vitro with Ascl1 and Neurog2. Reprogrammed cells were collected from the coverslips by suction and subjected to SmartSeq2 amplification
Creators: None
Submitter: Aditi Methi
Investigations: Transcriptomics
Purpose of the study is to compare the transcriptional profiles of astrocytes obtained from cortex gray matter and spinal cord of postnatal mice. Astrocytes were isolated from 2 regions via ACSA-2 sorting, cultured for 7 days and then subjected to RNA-seq
Creators: None
Submitter: Aditi Methi
Investigations: Transcriptomics
Spinal cord-derived astrocytes were transduced in cultures with retrovirus enconding a tamoxifen-dependent form of Ascl1 and Neurog2.Cells were treated for 24 hours, then transduced cells were FACS-sorted and their transcriptome analyzed.
Creators: None
Submitter: Aditi Methi
Investigations: Transcriptomics
Abstract (Expand)
Authors: J Kempf, K Knelles, B A Hersbach, D Petrik, T Riedemann, V Bednarova, A Janjic, T Simon-Ebert, W Enard, P Smialowski, M Götz, G Masserdotti
Date Published: 20th Jul 2021
Publication Type: Journal