Peripheral expression of brain-penetrant progranulin rescues pathologies in mouse models of frontotemporal lobar degeneration
- Order Assays
Progranulin (PGRN) haploinsufficiency is a major risk factor for frontotemporal lobar degeneration with TAR DNA-binding protein 43 (TDP-43) pathology (FTLD-GRN). Multiple therapeutic strategies are in clinical development to restore PGRN in the CNS, including gene therapy. However, a limitation of current gene therapy approaches aimed to alleviate FTLD-associated pathologies may be their inefficient brain exposure and biodistribution. We therefore developed an adeno-associated virus (AAV) targeting the liver (L) to achieve sustained peripheral expression of a transferrin receptor (TfR) binding, brain-penetrant (b) PGRN variant [AAV(L):bPGRN] in two mouse models of FTLD-GRN, namely, Grn knockout and GrnxTmem106b double knockout mice. This therapeutic strategy avoids potential safety and biodistribution issues of CNS-administered AAVs and maintains sustained concentrations of PGRN in the brain after a single dose. AAV(L):bPGRN treatment reduced several FTLD-GRN-associated pathologies including severe motor function deficits, aberrant TDP-43 phosphorylation, dysfunctional protein degradation, lipid metabolism, gliosis, and neurodegeneration in the brain. The potential translatability of our findings was tested in an in vitro model using cocultured human induced pluripotent stem cell (hiPSC)-derived microglia lacking PGRN and TMEM106B and wild-type hiPSC-derived neurons. As in mice, aberrant TDP-43, lysosomal dysfunction, and neuronal loss were ameliorated after treatment with exogenous TfR-binding protein transport vehicle fused to PGRN (PTV:PGRN). Together, our studies suggest that peripherally administered brain-penetrant PGRN replacement strategies ameliorate FTLD-GRN relevant phenotypes including TDP-43 pathology, neurodegeneration, and behavioral deficits. Our data provide preclinical proof of concept for the use of this AAV platform for treatment of FTLD-GRN and potentially other CNS disorders.
Export PNG
Views: 24
Created: 2nd Dec 2024 at 09:46
This item has not yet been tagged.
Related items
Projects: Published Datasets, Unpublished Datasets
Institutions: DZNE
Please visit the 'Related items' tab within the profile page to explore associated studies in more detail.
Projects: Published Datasets, Unpublished Datasets
Institutions: DZNE
Please visit the 'Related items' tab within the profile page to explore associated studies in more detail.
Projects: Published Datasets, Unpublished Datasets
Institutions: LMU Klinikum
Research Data Manager
Projects: Published Datasets, Unpublished Datasets
Institutions: LMU Klinikum
Please visit the 'Related items' tab within the profile page to explore associated studies in more detail.
Projects: Published Datasets, Unpublished Datasets
Institutions: DZNE
https://orcid.org/0000-0001-5329-192XPlease visit the 'Related items' tab within the profile page to explore associated studies in more detail.
This project serves as a centralized repository for omics datasets published by research groups within the SyNergy Cluster. It encompasses investigations such as proteomics and transcriptomics, which are further divided into individual studies led by SyNergy members. Each study is linked to relevant publications, assays and data files (with links to external repositories).
To explore investigations and their associated studies in more detail, please visit the 'Related items' tab on the Project ...
Public web page: Not specified
Organisms: Mus musculus, Rattus norvegicus, Homo sapiens, Macaca mulatta, Sus scrofa, Danio rerio
Submitter: Rainer Malik
Studies: A genome-wide in vivo CRISPR screen identifies essential regulators of T..., Adult neural stem cell activation in mice is regulated by the day/night ..., Diet triggers specific responses of hypothalamic astrocytes in time and ..., Direct neuronal reprogramming of NDUFS4 patient cells identifies the unf..., Distinct molecular profiles of skull bone marrow in health and neurologi..., Early adaptive immune activation detected in monozygotic twins with prod..., Heterogeneity of neurons reprogrammed from spinal cord astrocytes by the..., High-calorie diets uncouple hypothalamic oxytocin neurons from a gut-to-..., Histone Deacetylase 9 Activates IKK to Regulate Atherosclerotic Plaque V..., Innate Immune Pathways Promote Oligodendrocyte Progenitor Cell Recruitme..., Innate immune memory after brain injury drives inflammatory cardiac dysf..., MicroRNAs from extracellular vesicles as a signature for Parkinson's dis..., Microglia in white matter aging, Molecular diversity of diencephalic astrocytes reveals adult astrogenesi..., Multiomic ALS signatures highlight subclusters and sex differences sugge..., Multi‐omic landscaping of human midbrains identifies disease‐relevant mo..., Myelin degeneration in leucodystrophies, Oligodendrocytes in AD models, Oligodendrocytes in white matter aging, Parkinson's disease motor symptoms rescue by CRISPRa‐reprogramming astro..., Peripheral expression of brain-penetrant progranulin rescues pathologies..., Phagocyte-mediated synapse removal in cortical neuroinflammation is prom..., Shared inflammatory glial cell signature after stab wound injury, reveal..., Skin and gut imprinted helper T cell subsets exhibit distinct functional..., Spatial Transcriptomics-correlated Electron Microscopy maps transcriptio..., Spatial centrosome proteome of human neural cells uncovers disease-relev..., T cells modulate the microglial response to brain ischemia, Twin study identifies early immunological and metabolic dysregulation of...
Assays: Expression profiling: Bulk RNA-seq (human), Expression profiling: Bulk RNA-seq (human), Expression profiling: Bulk RNA-seq (human), Expression profiling: Bulk RNA-seq (human) + smallRNA-seq (human), Expression profiling: Bulk RNA-seq (mouse), Expression profiling: Bulk RNA-seq (mouse), Expression profiling: Bulk RNA-seq (mouse), Expression profiling: Bulk RNA-seq (mouse), Expression profiling: Bulk RNA-seq (mouse), Expression profiling: Bulk RNA-seq (mouse), Expression profiling: Bulk RNA-seq (mouse), Expression profiling: Bulk RNA-seq (mouse), Expression profiling: Bulk RNA-seq (mouse), Expression profiling: Bulk RNA-seq (mouse), Expression profiling: Bulk RNA-seq (mouse), Expression profiling: Bulk RNA-seq (rat), Expression profiling: MERFISH Spatial Transcriptomics (mouse), Expression profiling: Microarray (zebrafish), Expression profiling: RiboTag-mRNA-seq (mouse), Expression profiling: Small RNA-seq (human), Expression profiling: Spatial Transcriptomics (mouse), Expression profiling: Spatial Transcriptomics correlated Electron Micros..., Expression profiling: scRNA-seq (human), Expression profiling: scRNA-seq (human), Expression profiling: scRNA-seq (human), Expression profiling: scRNA-seq (human), Expression profiling: scRNA-seq (human) (Day 20), Expression profiling: scRNA-seq (human) (Day 5), Expression profiling: scRNA-seq (mouse), Expression profiling: scRNA-seq (mouse), Expression profiling: scRNA-seq (mouse), Expression profiling: scRNA-seq (mouse), Expression profiling: scRNA-seq (mouse), Expression profiling: scRNA-seq (mouse), Expression profiling: scRNA-seq (mouse), Expression profiling: scRNA-seq (mouse), Expression profiling: scRNA-seq (mouse), Expression profiling: scRNA-seq (mouse), Expression profiling: scRNA-seq (mouse), Expression profiling: scRNA-seq (mouse), Expression profiling: scRNA-seq (mouse), Expression profiling: scRNA-seq (mouse) + Bulk RNA-seq (mouse), Expression profiling: small RNA-seq (human), Expression profiling: small RNA-seq (mouse), Genome binding/occupancy profiling: Bulk ATAC-seq (mouse), Genome binding/occupancy profiling: Bulk ATAC-seq (mouse), Genome binding/occupancy profiling: CUT&Tag sequencing (mouse), Genome binding/occupancy profiling: snATAC-seq (mouse), Genome wide (GW) and validation CRISPR screens (rat)
Snapshots: No snapshots
Submitter: Aditi Methi
Assay type: Transcriptomics
Technology type: Sequencing
Investigation: Transcriptomics (Published)
Organisms: Mus musculus
SOPs: No SOPs
Data files: [DKO study] Rescue of TDP-43 and neuronal patho..., [Grn KO study] Gene expression profile of brain...
Snapshots: No snapshots
We generated AAV(L):bPGRN (L = liver, b = brain-penetrant), a liver-targeting adenovirus (AAV) encoding a fusion protein (8D3:PGRN) consisting of a single chain fragment variable (scFv) antibody recognizing mouse TfR (transferrin receptor) fused to human PGRN (hPGRN). To study the effects of AAV(L):bPGRN, we treated 6-week old wildtype or GRN,TMEM106B double knock-out mice with either 1.3 x 10^13 vg/kg AAV or isotonic saline solution (0.9% NaCl) intravenously via tail vain injection. 9-10 weeks ...
Creators: None
Submitter: Aditi Methi
Investigations: Transcriptomics (Published)
We generated AAV(L):bPGRN (L = liver, b = brain-penetrant), a liver-targeting adenovirus (AAV) encoding a fusion protein (8D3:PGRN) consisting of a single chain fragment variable (scFv) antibody recognizing mouse TfR (transferrin receptor) fused to human PGRN (hPGRN). Grn knockout (KO) mice were treated with either an AAV driving expression of 8D3-linked progranulin (AAV(L)-8D3-PGRN) in the liver (n=5) or saline (n=5). As a control, wildtype (WT) animals treated with saline (n=6) were included.
Creators: None
Submitter: Aditi Methi
Investigations: Transcriptomics (Published)
Abstract (Expand)
Authors: Marvin Reich, Matthew J Simon, Beate Polke, Iñaki Paris, Georg Werner, Christian Schrader, Lena Spieth, Sonnet S Davis, Sophie Robinson, Gabrielly Lunkes de Melo, Lennart Schlaphoff, Katrin Buschmann, Stefan Berghoff, Todd Logan, Brigitte Nuscher, Lis de Weerd, Dieter Edbauer, Mikael Simons, Jung H Suh, Thomas Sandmann, Mihalis S Kariolis, Sarah L DeVos, Joseph W Lewcock, Dominik Paquet, Anja Capell, Gilbert Di Paolo, Christian Haass
Date Published: 5th Jun 2024
Publication Type: Journal
PubMed ID: 38838131
DOI: 10.1126/scitranslmed.adj7308
Citation: Science translational medicine,16(750):eadj7308