Peripheral expression of brain-penetrant progranulin rescues pathologies in mouse models of frontotemporal lobar degeneration.

Abstract:

Progranulin (PGRN) haploinsufficiency is a major risk factor for frontotemporal lobar degeneration with TAR DNA-binding protein 43 (TDP-43) pathology (FTLD-GRN). Multiple therapeutic strategies are in clinical development to restore PGRN in the CNS, including gene therapy. However, a limitation of current gene therapy approaches aimed to alleviate FTLD-associated pathologies may be their inefficient brain exposure and biodistribution. We therefore developed an adeno-associated virus (AAV) targeting the liver (L) to achieve sustained peripheral expression of a transferrin receptor (TfR) binding, brain-penetrant (b) PGRN variant [AAV(L):bPGRN] in two mouse models of FTLD-GRN, namely, Grn knockout and GrnxTmem106b double knockout mice. This therapeutic strategy avoids potential safety and biodistribution issues of CNS-administered AAVs and maintains sustained concentrations of PGRN in the brain after a single dose. AAV(L):bPGRN treatment reduced several FTLD-GRN-associated pathologies including severe motor function deficits, aberrant TDP-43 phosphorylation, dysfunctional protein degradation, lipid metabolism, gliosis, and neurodegeneration in the brain. The potential translatability of our findings was tested in an in vitro model using cocultured human induced pluripotent stem cell (hiPSC)-derived microglia lacking PGRN and TMEM106B and wild-type hiPSC-derived neurons. As in mice, aberrant TDP-43, lysosomal dysfunction, and neuronal loss were ameliorated after treatment with exogenous TfR-binding protein transport vehicle fused to PGRN (PTV:PGRN). Together, our studies suggest that peripherally administered brain-penetrant PGRN replacement strategies ameliorate FTLD-GRN relevant phenotypes including TDP-43 pathology, neurodegeneration, and behavioral deficits. Our data provide preclinical proof of concept for the use of this AAV platform for treatment of FTLD-GRN and potentially other CNS disorders.

SEEK ID: http://lmmeisd-2.srv.mwn.de/publications/80

PubMed ID: 38838131

DOI: 10.1126/scitranslmed.adj7308

Projects: Published Datasets

Publication type: Journal

Journal: Science translational medicine

Citation: Science translational medicine,16(750):eadj7308

Date Published: 5th Jun 2024

URL:

Registered Mode: manually

Authors: Marvin Reich, Matthew J Simon, Beate Polke, Iñaki Paris, Georg Werner, Christian Schrader, Lena Spieth, Sonnet S Davis, Sophie Robinson, Gabrielly Lunkes de Melo, Lennart Schlaphoff, Katrin Buschmann, Stefan Berghoff, Todd Logan, Brigitte Nuscher, Lis de Weerd, Dieter Edbauer, Mikael Simons, Jung H Suh, Thomas Sandmann, Mihalis S Kariolis, Sarah L DeVos, Joseph W Lewcock, Dominik Paquet, Anja Capell, Gilbert Di Paolo, Christian Haass

help Submitter
Citation
Reich, M., Simon, M. J., Polke, B., Paris, I., Werner, G., Schrader, C., Spieth, L., Davis, S. S., Robinson, S., de Melo, G. L., Schlaphoff, L., Buschmann, K., Berghoff, S., Logan, T., Nuscher, B., de Weerd, L., Edbauer, D., Simons, M., Suh, J. H., … Haass, C. (2024). Peripheral expression of brain-penetrant progranulin rescues pathologies in mouse models of frontotemporal lobar degeneration. In Science Translational Medicine (Vol. 16, Issue 750). American Association for the Advancement of Science (AAAS). https://doi.org/10.1126/scitranslmed.adj7308
Activity

Views: 46

Created: 2nd Dec 2024 at 09:43

help Tags

This item has not yet been tagged.

help Attributions

None

Powered by
(v.1.15.0)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH