A ubiquitin-specific, proximity-based labeling approach for the identification of ubiquitin ligase substrates

Over 600 E3 ligases in humans execute ubiquitination of specific target proteins in a spatiotemporal manner to elicit desired signaling effects. Here, we developed a ubiquitin-specific proximity-based labeling method to selectively biotinylate substrates of a given ubiquitin ligase. By fusing the biotin ligase BirA and an Avi-tag variant to the candidate E3 ligase and ubiquitin, respectively, we were able to specifically enrich bona fide substrates of a ligase using a one-step streptavidin pulldown under denaturing conditions. We applied our method, which we named Ub-POD, to the really interesting new gene (RING) E3 ligase RAD18 and identified proliferating cell nuclear antigen and several other critical players in the DNA damage repair pathway. Furthermore, we successfully applied Ub-POD to the RING ubiquitin ligase tumor necrosis factor receptor-associated factor 6 and a U-box-type E3 ubiquitin ligase carboxyl terminus of Hsc70-interacting protein. We anticipate that our method could be widely adapted to all classes of ubiquitin ligases to identify substrates.

SEEK ID: http://lmmeisd-2.srv.mwn.de/studies/89

Proteomics (Published)

Projects: Published Datasets

Study position:

help Creators and Submitter
Creator
Submitter
Activity

Views: 22

Created: 2nd Dec 2024 at 11:49

help Tags

This item has not yet been tagged.

Powered by
(v.1.15.0)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH