Please visit the 'Related items' tab within the profile page to explore associated studies in more detail.
SEEK ID: http://lmmeisd-2.srv.mwn.de/people/7
Location: Germany
ORCID: Not specified
Joined: 17th Dec 2024
Expertise: Not specified
Tools: Not specified
Related items
This project serves as a centralized repository for omics datasets published by research groups within the SyNergy Cluster. It encompasses investigations such as proteomics and transcriptomics, which are further divided into individual studies led by SyNergy members. Each study is linked to relevant publications, assays and data files (with links to external repositories).
To explore investigations and their associated studies in more detail, please visit the 'Related items' tab on the Project ...
Public web page: Not specified
Organisms: Mus musculus, Rattus norvegicus, Homo sapiens, Macaca mulatta, Sus scrofa, Danio rerio
This project serves as a centralized repository for unpublished omics datasets from ongoing research led by SyNergy group leaders. It includes sample metadata and assay information for studies currently in progress, grouped under investigations such as proteomics and transcriptomics. The project aims to facilitate collaboration and data management within the cluster while maintaining confidentiality for unpublished work.
To explore investigations and their associated studies in more detail, please ...
Public web page: Not specified
Organisms: Mus musculus, Rattus norvegicus, Homo sapiens, Macaca mulatta, Sus scrofa, Danio rerio
Over 600 E3 ligases in humans execute ubiquitination of specific target proteins in a spatiotemporal manner to elicit desired signaling effects. Here, we developed a ubiquitin-specific proximity-based labeling method to selectively biotinylate substrates of a given ubiquitin ligase. By fusing the biotin ligase BirA and an Avi-tag variant to the candidate E3 ligase and ubiquitin, respectively, we were able to specifically enrich bona fide substrates of a ligase using a one-step streptavidin pulldown ...
Snapshots: No snapshots
Oligodendrocytes extend numerous cellular processes that wrap multiple times around axons to generate lipid-rich myelin sheaths. Myelin biogenesis requires an enormously productive biosynthetic machinery for generating and delivering these large amounts of newly synthesized lipids. Yet, a complete understanding of this process remains elusive. Utilizing volume electron microscopy, we demonstrate that the oligodendroglial endoplasmic reticulum (ER) is enriched in developing myelin, extending into ...
Snapshots: No snapshots
Autophagy deficiency in fed conditions leads to the formation of protein inclusions highlighting the contribution of this lysosomal delivery route to cellular proteostasis. Selective autophagy pathways exist that clear accumulated and aggregated ubiquitinated proteins. Receptors for this type of autophagy (aggrephagy) include p62, NBR1, TOLLIP, and OPTN, which possess LC3-interacting regions and ubiquitin-binding domains (UBDs), thus working as a bridge between LC3/GABARAP proteins and ubiquitinated ...
Submitter: Aditi Methi
Investigation: Proteomics (Published)
Assays: Affinity purification coupled with mass spectrometry proteomics (human)
Snapshots: No snapshots
The autophagic clearance of damaged lysosomes by lysophagy involves extensive modification of the organelle with ubiquitin, but the underlying ubiquitination machinery is still poorly characterized. Here, we use an siRNA screening approach and identify human UBE2QL1 as a major regulator of lysosomal ubiquitination, lysophagy, and cell survival after lysosomal damage. UBE2QL1 translocates to permeabilized lysosomes where it associates with damage sensors, ubiquitination targets, and lysophagy ...
Submitter: Rainer Malik
Investigation: Proteomics (Published)
Assays: Affinity purification coupled with mass spectrometry proteomics (human)
Snapshots: No snapshots
Cells respond to lysosomal membrane permeabilization by membrane repair or selective macroautophagy of damaged lysosomes, termed lysophagy, but it is not fully understood how this decision is made. Here, we uncover a pathway in human cells that detects lipid bilayer perturbations in the limiting membrane of compromised lysosomes, which fail to be repaired, and then initiates ubiquitin-triggered lysophagy. We find that SPG20 binds the repair factor IST1 on damaged lysosomes and, importantly, ...
Submitter: Aditi Methi
Investigation: Proteomics (Published)
Assays: Affinity purification coupled with mass spectrometry proteomics (human)
Snapshots: No snapshots
Abstract (Expand)
Authors: Jianping Wu, Georg Kislinger, Jerome Duschek, Ayşe Damla Durmaz, Benedikt Wefers, Ruoqing Feng, Karsten Nalbach, Wolfgang Wurst, Christian Behrends, Martina Schifferer, Mikael Simons
Date Published: 11th Nov 2024
Publication Type: Journal
Abstract (Expand)
Authors: Urbi Mukhopadhyay, Sophie Levantovsky, Teresa Maria Carusone, Sarah Gharbi, Frank Stein, Christian Behrends, Sagar Bhogaraju
Date Published: 9th Aug 2024
Publication Type: Journal
Abstract (Expand)
Authors: D. Brenner, K. Sieverding, J. Srinidhi, S. Zellner, C. Secker, R. Yilmaz, J. Dyckow, S. Amr, A. Ponomarenko, E. Tunaboylu, Y. Douahem, J. S. Schlag, L. Rodriguez Martinez, G. Kislinger, C. Niemann, K. Nalbach, W. P. Ruf, J. Uhl, J. Hollenbeck, L. Schirmer, A. Catanese, C. S. Lobsiger, K. M. Danzer, D. Yilmazer-Hanke, C. Munch, P. Koch, A. Freischmidt, M. Fetting, C. Behrends, R. Parlato, J. H. Weishaupt
Date Published: 6th May 2024
Publication Type: Journal
PubMed ID: 38517332
Citation: J Exp Med. 2024 May 6;221(5):e20221190. doi: 10.1084/jem.20221190. Epub 2024 Mar 22.
Abstract (Expand)
Authors: Pinki Gahlot, Bojana Kravic, Giulia Rota, Johannes van den Boom, Sophie Levantovsky, Nina Schulze, Elena Maspero, Simona Polo, Christian Behrends, Hemmo Meyer
Date Published: 18th Apr 2024
Publication Type: Journal
Abstract (Expand)
Authors: Y. Tian, J. Milic, L. S. Monasor, R. Chakraborty, S. Wang, Y. Yuan, Y. Asare, C. Behrends, S. Tahirovic, J. Bernhagen
Date Published: 19th Aug 2023
Publication Type: Journal
PubMed ID: 37597109
Citation: Cell Mol Life Sci. 2023 Aug 19;80(9):262. doi: 10.1007/s00018-023-04911-8.