- Order Assays
A rapid immune response to signals released from pathogens and injuries is critical for maintaining tissue integrity and restoring homeostasis. This response is largely mediated by the concerted action of pattern recognition receptors (PRRs). Such cooperativity has been described for Toll-like receptors (TLRs) and NACHT, LRR, and pyrin domain-containing protein 3 (NLRP3), but the underlying molecular mechanisms remain incompletely understood. Inflammasomes are multi-protein complexes defined by a cytosolic innate immune sensor, usually a PRR, which recruits the adaptor molecule apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC) to activate the effector caspase-1 leading to the release of matured IL-1β and IL-18. Active caspase-1 further cleaves gasdermin D (GSDMD) allowing the N-terminal domain of GSDMD (GSDMD-N) to form pores in the plasma membrane, thus facilitating the release of matured IL-1β and IL-18. Pore-forming GSDMD-N further induces pyroptosis, an inflammatory form of cell death.1 NLRP3 inflammasome activation typically entails NF-κB-driven transcriptional priming, which in turn licenses the cell for inflammasome assembly and activation.A previously discussed paradigm of rapid inflammasome assembly without the requirement for NF-κB-driven transcriptional priming involves simultaneous engagement of TLRs and NLRP3. While increasingly recognized, the molecular mechanisms and ensuing biological effects remain largely undefined. Recent work has demonstrated a role of IKKβ in activation of the NLRP3 inflammasome by recruiting NLRP3 to the dispersed trans-Golgi network. Given the activating effect of TLR signaling on IKK and the central role of NF-κB in inflammasome signaling, we scrutinized whether IKK could directly activate the inflammasome on top of its effects on priming.
SEEK ID: http://lmmeisd-2.srv.mwn.de/studies/2
Projects: SyNergy: Published Datasets
Study position:
Export PNG
Views: 73
Created: 29th May 2024 at 11:28
Last updated: 15th Oct 2024 at 14:34
This item has not yet been tagged.
Related items
- People (4)
- Programmes (1)
- Projects (1)
- Investigations (1)
- Assays (1)
- Data files (1)
- Publications (1)
Projects: SyNergy: Published Datasets, SyNergy: Unpublished Datasets
Institutions: LMU Klinikum
Please visit the 'Related items' tab within the profile page to explore associated studies in more detail.
Projects: SyNergy: Published Datasets, SyNergy: Unpublished Datasets
Institutions: LMU Klinikum
Please visit the 'Related items' tab within the profile page to explore associated studies in more detail.
Projects: SyNergy: Published Datasets, SyNergy: Unpublished Datasets
Institutions: LMU Klinikum
Research Data Steward
Projects: SyNergy: Published Datasets, SyNergy: Unpublished Datasets
Institutions: LMU Klinikum
Please visit the 'Related items' tab within the profile page to explore associated studies in more detail.
Neurological diseases are on the rise – and as societies age, they affect an ever-increasing number of people, not only in Europe, but worldwide.
The Munich Cluster for Systems Neurology (SyNergy) investigates how complex neurological diseases such as Alzheimer's disease, stroke, and multiple sclerosis develop. Even though these diseases differ in their clinical manifestations, overlapping mechanisms are involved in their development. For example, the immune system gets activated in dementia, ...
Projects: SyNergy: Published Datasets, SyNergy: Unpublished Datasets
Web page: https://www.synergy-munich.de
This project serves as a centralized repository for omics datasets published by research groups within the SyNergy Cluster. It encompasses investigations such as proteomics and transcriptomics, which are further divided into individual studies led by SyNergy members. Each study is linked to relevant publications, assays and data files (with links to external repositories).
To explore investigations and their associated studies in more detail, please visit the 'Related items' tab on the Project ...
Programme: Munich Cluster for Systems Neurology (SyNergy)
Public web page: Not specified
Organisms: Mus musculus, Rattus norvegicus, Homo sapiens, Macaca mulatta, Sus scrofa, Danio rerio
Submitter: Rainer Malik
Studies: A TBK1 variant causes autophagolysosomal and motoneuron pathology withou..., A ubiquitin-specific, proximity-based labeling approach for the identifi..., ACSL3 is a novel GABARAPL2 interactor that links ufmylation and lipid dr..., ADAM10-Mediated Ectodomain Shedding Is an Essential Driver of Podocyte D..., ALS-linked loss of Cyclin-F function affects HSP90, AMPK, a Regulator of Metabolism and Autophagy, Is Activated by Lysosomal..., ATG4 family proteins drive phagophore growth independently of the LC3/GA..., An optimized quantitative proteomics method establishes the cell type-re..., Autophagosomal Content Profiling Reveals an LC3C-Dependent Piecemeal Mit..., Autophagosome content profiling using proximity biotinylation proteomics..., Autophagy acts through TRAF3 and RELB to regulate gene expression via an..., Basic Fibroblast Growth Factor 2-Induced Proteome Changes Endorse Lewy B..., Beneficial Effect of ACI-24 Vaccination on Aβ Plaque Pathology and Micro..., Brain injury environment critically influences the connectivity of trans..., C9orf72 protein quality control by UBR5-mediated heterotypic ubiquitin c..., CRISPR-Mediated Induction of Neuron-Enriched Mitochondrial Proteins Boos..., Cell-type-specific profiling of brain mitochondria reveals functional an..., Cellular depletion of major cathepsin proteases reveals their concerted ..., Deciphering sources of PET signals in the tumor microenvironment of glio..., Defining the Adult Neural Stem Cell Niche Proteome Identifies Key Regula..., Development of a Proteomic Workflow for the Identification of Heparan Su..., Distinct molecular profiles of skull bone marrow in health and neurologi..., Excessive local host-graft connectivity in aging and amyloid-loaded brain, Experimental evidence for temporal uncoupling of brain Aβ deposition and..., Fibrillar Aβ triggers microglial proteome alterations and dysfunction in..., Filling the Gaps – A Call for Comprehensive Analysis of Extracellular Ma..., IKKβ binds NLRP3 providing a shortcut to inflammasome activation for rap..., Injury-specific factors in the cerebrospinal fluid regulate astrocyte pl..., Lipid and protein content profiling of isolated native autophagic vesicles, Loss of CLN3 in microglia leads to impaired lipid metabolism and myelin ..., Loss of NPC1 enhances phagocytic uptake and impairs lipid trafficking in..., Lysosomal damage sensing and lysophagy initiation by SPG20-ITCH, Lysosomal targeting of the ABC transporter TAPL is determined by membran..., Mapping autophagosome contents identifies interleukin-7 receptor-alpha a..., Met/HGFR triggers detrimental reactive microglia in TBI, MicroRNAs from extracellular vesicles as a signature for Parkinson's dis..., Multi-omics profiling identifies a deregulated FUS-MAP1B axis in ALS/FTD..., Multiomic ALS signatures highlight subclusters and sex differences sugge..., Neuronal differentiation of LUHMES cells induces substantial changes of ..., Nonvesicular lipid transfer drives myelin growth in the central nervous ..., NrCAM is a marker for substrate-selective activation of ADAM10 in Alzhei..., Pro-inflammatory activation following demyelination is required for myel..., Proteomic Characterization of Ubiquitin Carboxyl-Terminal Hydrolase 19 D..., Proteomic and lipidomic profiling of demyelinating lesions identifies fa..., Proteomic profiling in cerebral amyloid angiopathy reveals an overlap wi..., Proteomics of mouse brain endothelium uncovers dysregulation of vesicula..., Rational correction of pathogenic conformational defects in HTRA1, Reactivated endogenous retroviruses promote protein aggregate spreading, Signal peptide peptidase-like 2c impairs vesicular transport and cleaves..., Signatures of glial activity can be detected in the CSF proteome, Spatial centrosome proteome of human neural cells uncovers disease-relev..., Spatial proteomics in three-dimensional intact specimens, Spatial proteomics reveals secretory pathway disturbances caused by neur..., Systematically defining selective autophagy receptor-specific cargo usin..., Targeting the TCA cycle can ameliorate widespread axonal energy deficien..., The Alzheimer's disease-linked protease BACE1 modulates neuronal IL-6 si..., The Alzheimer's disease-linked protease BACE2 cleaves VEGFR3 and modulat..., The COP9 signalosome reduces neuroinflammation and attenuates ischemic n..., The Hippo network kinase STK38 contributes to protein homeostasis by inh..., The intramembrane protease SPPL2c promotes male germ cell development by..., The pseudoprotease iRhom1 controls ectodomain shedding of membrane prote..., The tetraspanin Tspan15 is an essential subunit of an ADAM10 scissor com..., The ubiquitin-conjugating enzyme UBE2QL1 coordinates lysophagy in respon..., Trnp1 organizes diverse nuclear membrane-less compartments in neural ste..., Ubiquitin profiling of lysophagy identifies actin stabilizer CNN2 as a t...
Assays: Affinity purification coupled with mass spectrometry proteomics (human), Affinity purification coupled with mass spectrometry proteomics (human), Affinity purification coupled with mass spectrometry proteomics (human), Affinity purification coupled with mass spectrometry proteomics (human), Affinity purification coupled with mass spectrometry proteomics (human), Affinity purification coupled with mass spectrometry proteomics (human), Affinity purification coupled with mass spectrometry proteomics (human), Affinity purification coupled with mass spectrometry proteomics (human), Affinity purification coupled with mass spectrometry proteomics (human), Bottom-up proteomics (human), Bottom-up proteomics (mouse), Bottom-up proteomics (mouse), Bottom-up proteomics (mouse), Bottom-up proteomics (mouse), Gel-based experiment (human), Phosphoproteomics / Bottom-up proteomics (mouse), Proximity-proteomics-based autophagosome content profiling (human), SWATH MS (human), SWATH MS (human, mouse), SWATH MS (mouse), Shotgun proteomics (human), Shotgun proteomics (human), Shotgun proteomics (human), Shotgun proteomics (human), Shotgun proteomics (human), Shotgun proteomics (human), Shotgun proteomics (human), Shotgun proteomics (human), Shotgun proteomics (human), Shotgun proteomics (human), Shotgun proteomics (human), Shotgun proteomics (human), Shotgun proteomics (human), Shotgun proteomics (human), Shotgun proteomics (human), Shotgun proteomics (human), Shotgun proteomics (human, mouse), Shotgun proteomics (human, mouse), Shotgun proteomics (human, mouse), Shotgun proteomics (human, mouse), Shotgun proteomics (macaque), Shotgun proteomics (mouse), Shotgun proteomics (mouse), Shotgun proteomics (mouse), Shotgun proteomics (mouse), Shotgun proteomics (mouse), Shotgun proteomics (mouse), Shotgun proteomics (mouse), Shotgun proteomics (mouse), Shotgun proteomics (mouse), Shotgun proteomics (mouse), Shotgun proteomics (mouse), Shotgun proteomics (mouse), Shotgun proteomics (mouse), Shotgun proteomics (mouse), Shotgun proteomics (mouse), Shotgun proteomics (mouse), Shotgun proteomics (mouse), Shotgun proteomics (mouse), Shotgun proteomics (mouse), Shotgun proteomics (mouse), Shotgun proteomics (mouse), Shotgun proteomics (mouse), Shotgun proteomics (mouse), Shotgun proteomics (mouse), Shotgun proteomics (mouse), Shotgun proteomics (rat), Untargeted Proteomics (mouse)
Snapshots: Snapshot 1
Cells were collected and lysed in urea buffer (9 M Urea, 50 mM Tris pH 8, 150 mM NaCl, 1x Roche protease inhibitor cocktail) followed by short sonification. Samples were cleared by centrifugation and protein amounts were adapted. Protein reduction was performed with dithiothreitol (DTT; 5 mM final) for 25 min at 56°C and protein alkylation by the addition of iodoacetamide (14 mM final) for 30 min at room temperature. Protein mixtures were quenched with DTT and diluted 1:5 with 1 M Tris-Hcl, pH ...
Submitter: Rainer Malik
Assay type: Proteomics
Technology type: Mass Spectrometry
Investigation: Proteomics (Published)
Organisms: Mus musculus
SOPs: No SOPs
Data files: IKKβ binds NLRP3 providing a shortcut to inflam...
Snapshots: No snapshots
Creators: None
Submitter: Rainer Malik
Investigations: Proteomics (Published)
Studies: IKKβ binds NLRP3 providing a shortcut to inflam...
Assays: Untargeted Proteomics (mouse)
Abstract
Authors: Yaw Asare, Margarita Shnipova, Luka Živković, Christina Schlegl, Federica Tosato, Arailym Aronova, Markus Brandhofer, Laura Strohm, Nathalie Beaufort, Rainer Malik, Christian Weber, Jürgen Bernhagen, Martin Dichgans
Date Published: 19th Oct 2022
Publication Type: Journal
PubMed ID: 36257930
DOI: 10.1038/s41392-022-01189-3
Citation: Signal transduction and targeted therapy,7(1):355