Studies
What is a Study?Filters
Rationale: Arterial inflammation manifested as atherosclerosis is the leading cause of mortality worldwide. Genome-wide association studies have identified a prominent role of HDAC (histone deacetylase)-9 in atherosclerosis and its clinical complications including stroke and myocardial infarction.
Objective: To determine the mechanisms linking HDAC9 to these vascular pathologies and explore its therapeutic potential for atheroprotection.
Methods and Results: We studied the effects of Hdac9 on ...
Submitter: Rainer Malik
Investigation: Transcriptomics (Published)
A rapid immune response to signals released from pathogens and injuries is critical for maintaining tissue integrity and restoring homeostasis. This response is largely mediated by the concerted action of pattern recognition receptors (PRRs). Such cooperativity has been described for Toll-like receptors (TLRs) and NACHT, LRR, and pyrin domain-containing protein 3 (NLRP3), but the underlying molecular mechanisms remain incompletely understood. Inflammasomes are multi-protein complexes defined by ...
The glial environment influences neurological disease progression, yet much of our knowledge still relies on preclinical animal studies, especially regarding astrocyte heterogeneity. In murine models of traumatic brain injury, beneficial functions of proliferating reactive astrocytes on disease outcome have been unraveled, but little is known regarding if and when they are present in human brain pathology. Here we examined a broad spectrum of pathologies with and without intracerebral hemorrhage ...
The medical burden of stroke extends beyond the brain injury itself and is largely determined by chronic comorbidities that develop secondarily. We hypothesized that these comorbidities might share a common immunological cause, yet chronic effects post-stroke on systemic immunity are underexplored. Here, we identify myeloid innate immune memory as a cause of remote organ dysfunction after stroke. Single-cell sequencing revealed persistent pro-inflammatory changes in monocytes/macrophages in ...
Submitter: Rainer Malik
Investigation: Transcriptomics (Published)
Assays: Expression profiling: Bulk RNA-seq (human), Expression profiling: scRNA-seq (mouse), Genome binding/occupancy profiling: Bulk ATAC-seq (mouse), Genome binding/occupancy profiling: CUT&Tag sequencing (mouse), Genome binding/occupancy profiling: snATAC-seq (mouse)
The oligodendrocyte progenitors (OPCs) are at the front of the glial reaction to the traumatic brain injury. However, regulatory pathways steering the OPC reaction as well as the role of reactive OPCs remain largely unknown. Here, we compared a long-lasting, exacerbated reaction of OPCs to the adult zebrafish brain injury with a timely restricted OPC activation to identify the specific molecular mechanisms regulating OPC reactivity and their contribution to regeneration. We demonstrated that the ...
Submitter: Aditi Methi
Investigation: Transcriptomics (Published)
Autophagy is responsible for degradation of an extensive portfolio of cytosolic cargoes that are engulfed in autophagosomes to facilitate their transport to lysosomes. Besides basal autophagy, which constantly degrades cellular material, the pathway is dynamically altered by different conditions, resulting in enhanced autophagosome formation and cargo turnover. The extensive profile of autophagosome content as well as the phospholipid composition of human autophagosome membranes remains elusive. ...
Loss-of-function mutations in CLN3 cause juvenile Batten disease, featuring neurodegeneration and early-stage neuroinflammation. How loss of CLN3 function leads to early neuroinflammation is not yet understood. Here, we have comprehensively studied microglia from Cln3∆ex7/8 mice, a genetically accurate disease model. Loss of CLN3 function in microglia leads to lysosomal storage material accumulation and abnormal morphology of subcellular organelles. Moreover, pathological proteomic signatures are ...