Studies
What is a Study?Filters
AMPK is a central regulator of metabolism and autophagy. Here we show how lysosomal damage activates AMPK. This occurs via a hitherto unrecognized signal transduction system whereby cytoplasmic sentinel lectins detect membrane damage leading to ubiquitination responses. Absence of Galectin 9 (Gal9) or loss of its capacity to recognize lumenal glycans exposed during lysosomal membrane damage abrogate such ubiquitination responses. Proteomic analyses with APEX2-Gal9 have revealed global changes ...
Submitter: Rainer Malik
Investigation: Proteomics (Published)
Assays: Affinity purification coupled with mass spectrometry proteomics (human)
To understand how cells communicate with each other, it is essential to define the cellular secretome, a collection of proteins including soluble secreted, unconventionally secreted and proteolytically-shed proteins. Quantitative methodologies to decipher the secretome are challenging, due to the requirement of large cell numbers and abundant serum proteins that interfere with the detection of low-abundant cellular secretome proteins. Here, we miniaturized secretome analysis by developing the ...
The sequestration of damaged mitochondria within double-membrane structures termed autophagosomes is a key step of PINK1/Parkin mitophagy. The ATG4 family of proteases are thought to regulate autophagosome formation exclusively by processing the ubiquitin-like ATG8 family (LC3/GABARAPs). We discover that human ATG4s promote autophagosome formation independently of their protease activity and of ATG8 family processing. ATG4 proximity networks reveal a role for ATG4s and their proximity partners, ...
Submitter: Rainer Malik
Investigation: Proteomics (Published)
Assays: Affinity purification coupled with mass spectrometry proteomics (human)
Autophagy allows the degradation of cytosolic endogenous and exogenous material in the lysosome. Substrates are engulfed by double-membrane vesicles, coined autophagosomes, which subsequently fuse with lysosomes. Depending on the involvement of specific receptor proteins, autophagy occurs in a selective or nonselective manner. While this process is well understood at the level of bulky cargo such as mitochondria and bacteria, we know very little about individual proteins and protein complexes ...
Submitter: Aditi Methi
Investigation: Proteomics (Published)
Assays: Proximity-proteomics-based autophagosome content profiling (human)
The ascorbate peroxidase APEX2 is commonly used to study the neighborhood of a protein of interest by proximity-dependent biotinylation. Here, we describe a protocol for sample processing compatible with immunoblotting and mass spectrometry that is suitable to specifically map the content of autophagosomes and potentially other transient vesicles without the need of subcellular fractionation. By combining live-cell biotinylation with proteinase K digestion of cell homogenates, proteins enriched ...
Submitter: Rainer Malik
Investigation: Proteomics (Published)
Assays: Affinity purification coupled with mass spectrometry proteomics (human)
Macroautophagy can regulate cell signalling and tumorigenesis via elusive molecular mechanisms. We establish a RAS mutant cancer cell model where the autophagy gene ATG5 is dispensable in A549 cells in vitro, yet promotes tumorigenesis in mice. ATG5 represses transcriptional activation by the TGFβ-SMAD gene regulatory pathway. However, autophagy does not terminate cytosolic signal transduction by TGFβ. Instead, we use proteomics to identify selective degradation of the signalling scaffold TRAF3. ...
Lewy body (LB) pathology and loss of dopaminergic neurons are imprints of Parkinson’s disease (PD). LBs are mainly comprised of alpha-Synuclein (Dijkstra et al., 2014). Strolling detection of LBs in brain regions contribute to progressive construct of PD pathology to which molecular mechanisms are not clear (H. Braak & Del Tredici, 2017). Two key facets of LB formation are protein aggregation via misfolding and transmission of misfoldled proteins to various brain regions, eventually causing ...