Studies

What is a Study?
60 Studies visible to you, out of a total of 60

Hereditary sensory and autonomic neuropathy 9 (HSAN9) is a rare neurological disease caused by mutations in the gene encoding for Tectonin β-propeller repeat containing protein 2 (TECPR2) which possibly result in loss of the protein. Beside its potential role in autophagy, TECPR2 may serve as positive modulator of COPII-mediated ER export. However, the molecular consequences of TECPR2 deficiency for the secretory pathway remain unclear, in particular with regard to specific cargo proteins. By ...

Submitter: Rainer Malik

Investigation: Proteomics

Assays: Shotgun proteomics

In the context of studying the role of the COP9 signalosome (CSN) in neuroinflammation and ischemic neuronal damage, we studied the effect of the cullin NEDDylation state-modifying drugs MLN4924 and CSN5i-3 in BV2 microglial cells, an immortalized murine cell line featuring many of the characteristics of primary microglia. Owing to its potent inhibitory effect on the NEDDylation cascade, MLN4924 exhibits a CSN5-like anti-inflammatory activity. Csn5i-3 is a small molecule inhibitor that specifically ...

Submitter: Rainer Malik

Investigation: Proteomics

Assays: Shotgun proteomics

While deleterious mutations are responsible for the vast majority of TBK1-linked ALS/FTD cases, the ALS/FTD causing missense mutation p.E696K leads to a selective loss of TBK1/optineurin binding. Knock-in of this specific missense mutation causes progressive autophagolysosomal dysfunction and an ALS/FTD-like phenotype in mice, while, as opposed to TBK1 deletion, RIPK/TNF-α-dependent necroptosis or overt inflammation are absent. Our results highlight the role of autophagolysosomal dysfunction as ...

Submitter: Rainer Malik

Investigation: Proteomics

Assays: Bottom-up proteomics, Shotgun proteomics

Mitochondria account for essential cellular pathways, from ATP production to nucleotide metabolism, and their deficits lead to neurological disorders and contribute to the onset of age-related diseases. Direct neuronal reprogramming aims at replacing neurons lost in such conditions, but almost nothing is known about the impact of mitochondrial dysfunction in human cell direct reprogramming. Here we explore the defects and how to improve the neuronal reprogramming of iPSC-derived astrocytes carrying ...

Signal peptide peptidase (SPP) and the four homologous SPP-like (SPPL) proteases constitute a family of intramembrane aspartyl proteases with selectivity for type II-oriented transmembrane segments. Here, we have analysed the physiological function of the orphan protease SPPL2c, previously considered to represent a non-expressed pseudogene. We identified proteolytic activity of SPPL2c towards selected tail-anchored proteins. Despite shared ER localization, SPPL2c and SPP exhibit distinct, though ...

Submitter: Rainer Malik

Investigation: Proteomics

Assays: Shotgun proteomics

Signal peptide peptidase-like 2c (SPPL2c) is the only member of the GxGD type intramembrane-cleaving aspartyl proteases that so far has not been assigned any substrates and thus its capability of proteolysis and its physiological function remain enigmatic. Based on a surprisingly high expression of SPPL2c in elongated spermatids we applied proteomics on a cellular model system with ectopic expression of SPPL2c and identified a variety of candidate substrates. The majority of these candidate ...

Submitter: Rainer Malik

Investigation: Proteomics

Assays: Shotgun proteomics

No description specified

Submitter: Rainer Malik

Investigation: Proteomics

Assays: Shotgun proteomics

Powered by
(v.1.15.0)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH