Studies
What is a Study?Filters
Multiple sclerosis (MS) involves the infiltration of autoreactive T cells into the CNS, yet we lack a comprehensive understanding of the signaling pathways that regulate this process. Here, we conducted a genome-wide in vivo CRISPR screen in a rat MS model and identified 5 essential brakes and 18 essential facilitators of T cell migration to the CNS. While the transcription factor ETS1 limits entry to the CNS by controlling T cell responsiveness, three functional modules, centered around the ...
While deleterious mutations are responsible for the vast majority of TBK1-linked ALS/FTD cases, the ALS/FTD causing missense mutation p.E696K leads to a selective loss of TBK1/optineurin binding. Knock-in of this specific missense mutation causes progressive autophagolysosomal dysfunction and an ALS/FTD-like phenotype in mice, while, as opposed to TBK1 deletion, RIPK/TNF-α-dependent necroptosis or overt inflammation are absent. Our results highlight the role of autophagolysosomal dysfunction as ...
Submitter: Rainer Malik
Investigation: Proteomics (Published)
Assays: Bottom-up proteomics (mouse), Shotgun proteomics (human)
While studies of the autophagy-related (ATG) genes in knockout models have led to an explosion of knowledge about the functions of autophagy components, the exact roles of LC3 and GABARAP family proteins (human ATG8 equivalents) are still poorly understood. A major drawback in understanding their roles is that the available interactome data has largely been acquired using overexpression systems. To overcome these limitations, we employed CRISPR/Cas9-based genome-editing to generate a panel of ...
Protoemics of endothelia, podocytes, mesangial cells from mouse
The founding member of the F-box protein family, Cyclin F, serves as substrate adaptor for the Ubiquitin E3 ligase Skp1-Cul1-F-box (SCF)Cyclin F which is responsible for ubiquitination of proteins involved in cell cycle progression, DNA damage and mitotic fidelity. Missense mutations in CCNF encoding for Cyclin F are associated with amyotrophic lateral sclerosis (ALS). However, it remains elusive whether CCNF mutations affect the substrate adaptor function of Cyclin F and whether altered SCFCyclin ...
Submitter: Rainer Malik
Investigation: Proteomics (Published)
AMPK is a central regulator of metabolism and autophagy. Here we show how lysosomal damage activates AMPK. This occurs via a hitherto unrecognized signal transduction system whereby cytoplasmic sentinel lectins detect membrane damage leading to ubiquitination responses. Absence of Galectin 9 (Gal9) or loss of its capacity to recognize lumenal glycans exposed during lysosomal membrane damage abrogate such ubiquitination responses. Proteomic analyses with APEX2-Gal9 have revealed global changes ...
Submitter: Rainer Malik
Investigation: Proteomics (Published)
Assays: Affinity purification coupled with mass spectrometry proteomics (human)
To understand how cells communicate with each other, it is essential to define the cellular secretome, a collection of proteins including soluble secreted, unconventionally secreted and proteolytically-shed proteins. Quantitative methodologies to decipher the secretome are challenging, due to the requirement of large cell numbers and abundant serum proteins that interfere with the detection of low-abundant cellular secretome proteins. Here, we miniaturized secretome analysis by developing the ...