Publications

What is a Publication?
22 Publications visible to you, out of a total of 22

Abstract (Expand)

Oligodendrocytes extend numerous cellular processes that wrap multiple times around axons to generate lipid-rich myelin sheaths. Myelin biogenesis requires an enormously productive biosynthetic machinery for generating and delivering these large amounts of newly synthesized lipids. Yet, a complete understanding of this process remains elusive. Utilizing volume electron microscopy, we demonstrate that the oligodendroglial endoplasmic reticulum (ER) is enriched in developing myelin, extending into and making contact with the innermost myelin layer where growth occurs. We explore the possibility of transfer of lipids from the ER to myelin, and find that the glycolipid transfer protein (GLTP), implicated in nonvesicular lipid transport, is highly enriched in the growing myelin sheath. Mice with a specific knockout of Gltp in oligodendrocytes exhibit ER pathology, hypomyelination and a decrease in myelin glycolipid content. In summary, our results demonstrate a role for nonvesicular lipid transport in CNS myelin growth, revealing a cellular pathway in developmental myelination.

Authors: Jianping Wu, Georg Kislinger, Jerome Duschek, Ayşe Damla Durmaz, Benedikt Wefers, Ruoqing Feng, Karsten Nalbach, Wolfgang Wurst, Christian Behrends, Martina Schifferer, Mikael Simons

Date Published: 11th Nov 2024

Publication Type: Journal

Abstract (Expand)

Over 600 E3 ligases in humans execute ubiquitination of specific target proteins in a spatiotemporal manner to elicit desired signaling effects. Here, we developed a ubiquitin-specific proximity-based labeling method to selectively biotinylate substrates of a given ubiquitin ligase. By fusing the biotin ligase BirA and an Avi-tag variant to the candidate E3 ligase and ubiquitin, respectively, we were able to specifically enrich bona fide substrates of a ligase using a one-step streptavidin pulldown under denaturing conditions. We applied our method, which we named Ub-POD, to the really interesting new gene (RING) E3 ligase RAD18 and identified proliferating cell nuclear antigen and several other critical players in the DNA damage repair pathway. Furthermore, we successfully applied Ub-POD to the RING ubiquitin ligase tumor necrosis factor receptor-associated factor 6 and a U-box-type E3 ubiquitin ligase carboxyl terminus of Hsc70-interacting protein. We anticipate that our method could be widely adapted to all classes of ubiquitin ligases to identify substrates.

Authors: Urbi Mukhopadhyay, Sophie Levantovsky, Teresa Maria Carusone, Sarah Gharbi, Frank Stein, Christian Behrends, Sagar Bhogaraju

Date Published: 9th Aug 2024

Publication Type: Journal

Abstract (Expand)

Heterozygous mutations in the TBK1 gene can cause amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The majority of TBK1-ALS/FTD patients carry deleterious loss-of-expression mutations, and it is still unclear which TBK1 function leads to neurodegeneration. We investigated the impact of the pathogenic TBK1 missense variant p.E696K, which does not abolish protein expression, but leads to a selective loss of TBK1 binding to the autophagy adaptor protein and TBK1 substrate optineurin. Using organelle-specific proteomics, we found that in a knock-in mouse model and human iPSC-derived motor neurons, the p.E696K mutation causes presymptomatic onset of autophagolysosomal dysfunction in neurons precipitating the accumulation of damaged lysosomes. This is followed by a progressive, age-dependent motor neuron disease. Contrary to the phenotype of mice with full Tbk1 knock-out, RIPK/TNF-alpha-dependent hepatic, neuronal necroptosis, and overt autoinflammation were not detected. Our in vivo results indicate autophagolysosomal dysfunction as a trigger for neurodegeneration and a promising therapeutic target in TBK1-ALS/FTD.

Authors: D. Brenner, K. Sieverding, J. Srinidhi, S. Zellner, C. Secker, R. Yilmaz, J. Dyckow, S. Amr, A. Ponomarenko, E. Tunaboylu, Y. Douahem, J. S. Schlag, L. Rodriguez Martinez, G. Kislinger, C. Niemann, K. Nalbach, W. P. Ruf, J. Uhl, J. Hollenbeck, L. Schirmer, A. Catanese, C. S. Lobsiger, K. M. Danzer, D. Yilmazer-Hanke, C. Munch, P. Koch, A. Freischmidt, M. Fetting, C. Behrends, R. Parlato, J. H. Weishaupt

Date Published: 6th May 2024

Publication Type: Journal

Abstract (Expand)

Cells respond to lysosomal membrane permeabilization by membrane repair or selective macroautophagy of damaged lysosomes, termed lysophagy, but it is not fully understood how this decision is made. Here, we uncover a pathway in human cells that detects lipid bilayer perturbations in the limiting membrane of compromised lysosomes, which fail to be repaired, and then initiates ubiquitin-triggered lysophagy. We find that SPG20 binds the repair factor IST1 on damaged lysosomes and, importantly, integrates that with the detection of damage-associated lipid-packing defects of the lysosomal membrane. Detection occurs via sensory amphipathic helices in SPG20 before rupture of the membrane. If lipid-packing defects are extensive, such as during lipid peroxidation, SPG20 recruits and activates ITCH, which marks the damaged lysosome with lysine-63-linked ubiquitin chains to initiate lysophagy and thus triages the lysosome for destruction. With SPG20 being linked to neurodegeneration, these findings highlight the relevance of a coordinated lysosomal damage response for cellular homeostasis.

Authors: Pinki Gahlot, Bojana Kravic, Giulia Rota, Johannes van den Boom, Sophie Levantovsky, Nina Schulze, Elena Maspero, Simona Polo, Christian Behrends, Hemmo Meyer

Date Published: 18th Apr 2024

Publication Type: Journal

Abstract (Expand)

The constitutive photomorphogenesis 9 (COP9) signalosome (CSN) is a deNEDDylase controlling ubiquitination activity of cullin-RING-E3 ligases (CRLs) and thus the levels of key cellular proteins. While the CSN and its catalytic subunit CSN5 have been extensively studied in cancer, its role in inflammatory and neurological diseases is less understood. Following verification that CSN5 is expressed in mouse and human brain, here we studied the role of the CSN in neuroinflammation and ischemic neuronal damage employing models of relevant brain-resident cell types, an ex vivo organotypic brain slice culture model, and the CRL NEDDylation state-modifying drugs MLN4924 and CSN5i-3, which mimic and inhibit, respectively, CSN5 deNEDDylase activity. Untargeted mass spectrometry-based proteomics revealed that MLN4924 and CSN5i-3 substantially alter the microglial proteome, including inflammation-related proteins. Applying these drugs and mimicking microglial and endothelial inflammation as well as ischemic neuronal stress by TNF and oxygen-glucose-deprivation/reoxygenation (OGD/RO) treatment, respectively, we could link CSN5/CSN-mediated cullin deNEDDylation to reduction of microglial inflammation, attenuated cerebral endothelial inflammation, improved barrier integrity, as well as protection from ischemic stress-induced neuronal cell death. Specifically, MLN4924 reduced phagocytic activity, motility, and inflammatory cytokine expression of microglial cells, and this was linked to inhibition of inflammation-induced NF-kappaB and Akt signaling. Inversely, Csn5 knockdown and CSN5i-3 increased NF-kappaB signaling. Moreover, MLN4924 abrogated TNF-induced NF-kappaB signaling in cerebral microvascular endothelial cells (hCMECs) and rescued hCMEC monolayers from OGD/RO-triggered barrier leakage, while CSN5i-3 exacerbated permeability. In an ex vivo organotypic brain slice model of ischemia/reperfusion stress, MLN4924 protected from neuronal death, while CSN5i-3 impaired neuronal survival. Neuronal damage was attributable to microglial activation and inflammatory cytokines, as indicated by microglial shape tracking and TNF-blocking experiments. Our results indicate a protective role of the CSN in neuroinflammation via brain-resident cell types involved in ischemic brain disease and implicate CSN activity-mimicking deNEDDylating drugs as potential therapeutics.

Authors: Y. Tian, J. Milic, L. S. Monasor, R. Chakraborty, S. Wang, Y. Yuan, Y. Asare, C. Behrends, S. Tahirovic, J. Bernhagen

Date Published: 19th Aug 2023

Publication Type: Journal

Abstract (Expand)

Hexanucleotide repeat expansions within C9orf72 are a frequent cause of amyotrophic lateral sclerosis and frontotemporal dementia. Haploinsufficiency leading to reduced C9orf72 protein contributes to disease pathogenesis. C9orf72 binds SMCR8 to form a robust complex that regulates small GTPases, lysosomal integrity, and autophagy. In contrast to this functional understanding, we know far less about the assembly and turnover of the C9orf72-SMCR8 complex. Loss of either subunit causes the concurrent ablation of the respective partner. However, the molecular mechanism underlying this interdependence remains elusive. Here, we identify C9orf72 as a substrate of branched ubiquitin chain-dependent protein quality control. We find that SMCR8 prevents C9orf72 from rapid degradation by the proteasome. Mass spectrometry and biochemical analyses reveal the E3 ligase UBR5 and the BAG6 chaperone complex as C9orf72-interacting proteins, which are components of the machinery that modifies proteins with K11/K48-linked heterotypic ubiquitin chains. Depletion of UBR5 results in reduced K11/K48 ubiquitination and increased C9orf72 when SMCR8 is absent. Our data provide novel insights into C9orf72 regulation with potential implication for strategies to antagonize C9orf72 loss during disease progression.

Authors: J. Julg, D. Edbauer, C. Behrends

Date Published: 3rd Aug 2023

Publication Type: Journal

Abstract (Expand)

Hereditary sensory and autonomic neuropathy 9 (HSAN9) is a rare fatal neurological disease caused by mis- and nonsense mutations in the gene encoding for Tectonin beta-propeller repeat containing protein 2 (TECPR2). While TECPR2 is required for lysosomal consumption of autophagosomes and ER-to-Golgi transport, it remains elusive how exactly TECPR2 is involved in autophagy and secretion and what downstream sequels arise from defective TECPR2 due to its involvement in these processes. To address these questions, we determine molecular consequences of TECPR2 deficiency along the secretory pathway. By employing spatial proteomics, we describe pronounced changes with numerous proteins important for neuronal function being affected in their intracellular transport. Moreover, we provide evidence that TECPR2's interaction with the early secretory pathway is not restricted to COPII carriers. Collectively, our systematic profiling of a HSAN9 cell model points to specific trafficking and sorting defects which might precede autophagy dysfunction upon TECPR2 deficiency.

Authors: K. Nalbach, M. Schifferer, D. Bhattacharya, H. Ho-Xuan, W. C. Tseng, L. A. Williams, A. Stolz, S. F. Lichtenthaler, Z. Elazar, C. Behrends

Date Published: 16th Feb 2023

Publication Type: Journal

Powered by
(v.1.15.0)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH