Studies
What is a Study?Filters
The bone marrow in the skull is important for shaping immune responses in the brain and meninges, but its molecular makeup among bones and relevance in human diseases remain unclear. Here, we show that the mouse skull has the most distinct transcriptomic profile compared with other bones in states of health and injury, characterized by a late-stage neutrophil phenotype. In humans, proteome analysis reveals that the skull marrow is the most distinct, with differentially expressed neutrophil-related ...
The bone marrow in the skull is important for shaping immune responses in the brain and meninges, but its molecular makeup among bones and relevance in human diseases remain unclear. Here, we show that the mouse skull has the most distinct transcriptomic profile compared with other bones in states of health and injury, characterized by a late-stage neutrophil phenotype. In humans, proteome analysis reveals that the skull marrow is the most distinct, with differentially expressed neutrophil-related ...
Submitter: Aditi Methi
Investigation: Transcriptomics (Published)
Assays: Expression profiling: scRNA-seq (mouse) + Bulk RNA-seq (mouse)
Microglial dysfunction is a key pathological feature of Alzheimer´s disease (AD), but little is known about proteome-wide changes in microglia during the course of AD pathogenesis and their consequences for microglial function. Here, we performed an in-depth proteomic characterization of microglia in two AD mouse models, the overexpression APPPS1 and the knock-in AppNL-G-F (APP-KI) model. Proteome changes were followed from pre-deposition to early, middle and advanced stages of amyloid plaque ...
The medical burden of stroke extends beyond the brain injury itself and is largely determined by chronic comorbidities that develop secondarily. We hypothesized that these comorbidities might share a common immunological cause, yet chronic effects post-stroke on systemic immunity are underexplored. Here, we identify myeloid innate immune memory as a cause of remote organ dysfunction after stroke. Single-cell sequencing revealed persistent pro-inflammatory changes in monocytes/macrophages in ...
Submitter: Rainer Malik
Investigation: Transcriptomics (Published)
Assays: Expression profiling: Bulk RNA-seq (human), Expression profiling: scRNA-seq (mouse), Genome binding/occupancy profiling: Bulk ATAC-seq (mouse), Genome binding/occupancy profiling: CUT&Tag sequencing (mouse), Genome binding/occupancy profiling: snATAC-seq (mouse)
Neuroinflammation after stroke is characterized by the activation of resident microglia and the invasion of circulating leukocytes into the brain. Although lymphocytes infiltrate the brain in small number, they have been consistently demonstrated to be the most potent leukocyte subpopulation contributing to secondary inflammatory brain injury. However, the exact mechanism of how this minimal number of lymphocytes can profoundly affect stroke outcome is still largely elusive. Here, using a mouse ...
Submitter: Rainer Malik
Investigation: Transcriptomics (Published)