Please visit the 'Related items' tab within the profile page to explore associated studies in more detail.
SEEK ID: http://lmmeisd-2.srv.mwn.de/people/13
Location: Germany
ORCID: Not specified
Joined: 18th Dec 2024
Expertise: Not specified
Tools: Not specified
Related items
Neurological diseases are on the rise – and as societies age, they affect an ever-increasing number of people, not only in Europe, but worldwide.
The Munich Cluster for Systems Neurology (SyNergy) investigates how complex neurological diseases such as Alzheimer's disease, stroke, and multiple sclerosis develop. Even though these diseases differ in their clinical manifestations, overlapping mechanisms are involved in their development. For example, the immune system gets activated in dementia, ...
Projects: SyNergy: Published Datasets, SyNergy: Unpublished Datasets
Web page: https://www.synergy-munich.de
This project serves as a centralized repository for unpublished omics datasets from ongoing research led by SyNergy group leaders. It includes sample metadata and assay information for studies currently in progress, grouped under investigations such as proteomics and transcriptomics. The project aims to facilitate collaboration and data management within the cluster while maintaining confidentiality for unpublished work.
To explore investigations and their associated studies in more detail, please ...
Programme: Munich Cluster for Systems Neurology (SyNergy)
Public web page: Not specified
Organisms: Mus musculus, Rattus norvegicus, Homo sapiens, Macaca mulatta, Sus scrofa, Danio rerio
This project serves as a centralized repository for omics datasets published by research groups within the SyNergy Cluster. It encompasses investigations such as proteomics and transcriptomics, which are further divided into individual studies led by SyNergy members. Each study is linked to relevant publications, assays and data files (with links to external repositories).
To explore investigations and their associated studies in more detail, please visit the 'Related items' tab on the Project ...
Programme: Munich Cluster for Systems Neurology (SyNergy)
Public web page: Not specified
Organisms: Mus musculus, Rattus norvegicus, Homo sapiens, Macaca mulatta, Sus scrofa, Danio rerio
PTEN-induced kinase 1 (PINK1) is a short-lived protein required for the removal of damaged mitochondria through Parkin translocation and mitophagy. Because the short half-life of PINK1 limits its ability to be trafficked into neurites, local translation is required for this mitophagy pathway to be active far from the soma. The Pink1 transcript is associated and cotransported with neuronal mitochondria. In concert with translation, the mitochondrial outer membrane proteins synaptojanin 2 binding ...
Submitter: Aditi Methi
Investigation: Transcriptomics (Published)
Snapshots: No snapshots
Ubiquilin-2 (UBQLN2) is a ubiquitin-binding protein that shuttles ubiquitinated proteins to proteasomal and autophagic degradation. UBQLN2 mutations are genetically linked to the neurodegenerative disorders amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD). However, it remains elusive how UBQLN2 mutations cause ALS/FTD. Here, we systematically examined proteomic and transcriptomic changes in patient-derived lymphoblasts and CRISPR/Cas9-engineered HeLa cells carrying ALS/FTD ...
Snapshots: No snapshots
Abstract (Expand)
Authors: L. Strohm, Z. Hu, Y. Suk, A. Ruhmkorf, E. Sternburg, V. Gattringer, H. Riemenschneider, R. Berutti, E. Graf, J. H. Weishaupt, M. S. Brill, A. B. Harbauer, D. Dormann, J. Dengjel, D. Edbauer, C. Behrends
Date Published: 1st Jul 2022
Publication Type: Journal
PubMed ID: 35777956
Citation: Life Sci Alliance. 2022 Jul 1;5(11):e202101327. doi: 10.26508/lsa.202101327. Print 2022 Nov.
Abstract (Expand)
Authors: Angelika B Harbauer, J Tabitha Hees, Simone Wanderoy, Inmaculada Segura, Whitney Gibbs, Yiming Cheng, Martha Ordonez, Zerong Cai, Romain Cartoni, Ghazaleh Ashrafi, Chen Wang, Fabiana Perocchi, Zhigang He, Thomas L Schwarz
Date Published: 4th May 2022
Publication Type: Journal