Publications

What is a Publication?
2 Publications visible to you, out of a total of 2

Abstract (Expand)

Ubiquilin-2 (UBQLN2) is a ubiquitin-binding protein that shuttles ubiquitinated proteins to proteasomal and autophagic degradation. UBQLN2 mutations are genetically linked to the neurodegenerative disorders amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD). However, it remains elusive how UBQLN2 mutations cause ALS/FTD. Here, we systematically examined proteomic and transcriptomic changes in patient-derived lymphoblasts and CRISPR/Cas9-engineered HeLa cells carrying ALS/FTD UBQLN2 mutations. This analysis revealed a strong up-regulation of the microtubule-associated protein 1B (MAP1B) which was also observed in UBQLN2 knockout cells and primary rodent neurons depleted of UBQLN2, suggesting that a UBQLN2 loss-of-function mechanism is responsible for the elevated MAP1B levels. Consistent with MAP1B's role in microtubule binding, we detected an increase in total and acetylated tubulin. Furthermore, we uncovered that UBQLN2 mutations result in decreased phosphorylation of MAP1B and of the ALS/FTD-linked fused in sarcoma (FUS) protein at S439 which is critical for regulating FUS-RNA binding and MAP1B protein abundance. Together, our findings point to a deregulated UBQLN2-FUS-MAP1B axis that may link protein homeostasis, RNA metabolism, and cytoskeleton dynamics, three molecular pathomechanisms of ALS/FTD.

Authors: L. Strohm, Z. Hu, Y. Suk, A. Ruhmkorf, E. Sternburg, V. Gattringer, H. Riemenschneider, R. Berutti, E. Graf, J. H. Weishaupt, M. S. Brill, A. B. Harbauer, D. Dormann, J. Dengjel, D. Edbauer, C. Behrends

Date Published: 1st Jul 2022

Publication Type: Journal

Abstract (Expand)

PTEN-induced kinase 1 (PINK1) is a short-lived protein required for the removal of damaged mitochondria through Parkin translocation and mitophagy. Because the short half-life of PINK1 limits its ability to be trafficked into neurites, local translation is required for this mitophagy pathway to be active far from the soma. The Pink1 transcript is associated and cotransported with neuronal mitochondria. In concert with translation, the mitochondrial outer membrane proteins synaptojanin 2 binding protein (SYNJ2BP) and synaptojanin 2 (SYNJ2) are required for tethering Pink1 mRNA to mitochondria via an RNA-binding domain in SYNJ2. This neuron-specific adaptation for the local translation of PINK1 provides distal mitochondria with a continuous supply of PINK1 for the activation of mitophagy.

Authors: Angelika B Harbauer, J Tabitha Hees, Simone Wanderoy, Inmaculada Segura, Whitney Gibbs, Yiming Cheng, Martha Ordonez, Zerong Cai, Romain Cartoni, Ghazaleh Ashrafi, Chen Wang, Fabiana Perocchi, Zhigang He, Thomas L Schwarz

Date Published: 4th May 2022

Publication Type: Journal

Powered by
(v.1.15.0)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH