Publications

What is a Publication?
4 Publications visible to you, out of a total of 4

Abstract (Expand)

Age-related decline in brain endothelial cell (BEC) function contributes critically to neurological disease. Comprehensive atlases of the BEC transcriptome have become available, but results from proteomic profiling are lacking. To gain insights into endothelial pathways affected by aging, we developed a magnetic-activated cell sorting-based mouse BEC enrichment protocol compatible with proteomics and resolved the profiles of protein abundance changes during aging. Unsupervised cluster analysis revealed a segregation of age-related protein dynamics with biological functions, including a downregulation of vesicle-mediated transport. We found a dysregulation of key regulators of endocytosis and receptor recycling (most prominently Arf6), macropinocytosis and lysosomal degradation. In gene deletion and overexpression experiments, Arf6 affected endocytosis pathways in endothelial cells. Our approach uncovered changes not picked up by transcriptomic studies, such as accumulation of vesicle cargo and receptor ligands, including Apoe. Proteomic analysis of BECs from Apoe-deficient mice revealed a signature of accelerated aging. Our findings provide a resource for analysing BEC function during aging.

Authors: K. Todorov-Volgyi, J. Gonzalez-Gallego, S. A. Muller, N. Beaufort, R. Malik, M. Schifferer, M. I. Todorov, D. Crusius, S. Robinson, A. Schmidt, J. Korbelin, F. Bareyre, A. Erturk, C. Haass, M. Simons, D. Paquet, S. F. Lichtenthaler, M. Dichgans

Date Published: 22nd Apr 2024

Publication Type: Journal

Abstract (Expand)

Various cellular sources hamper interpretation of positron emission tomography (PET) biomarkers in the tumor microenvironment (TME). We developed an approach of immunomagnetic cell sorting after in vivo radiotracer injection (scRadiotracing) with three-dimensional (3D) histology to dissect the cellular allocation of PET signals in the TME. In mice with implanted glioblastoma, translocator protein (TSPO) radiotracer uptake per tumor cell was higher compared to tumor-associated microglia/macrophages (TAMs), validated by protein levels. Translation of in vitro scRadiotracing to patients with glioma immediately after tumor resection confirmed higher single-cell TSPO tracer uptake of tumor cells compared to immune cells. Across species, cellular radiotracer uptake explained the heterogeneity of individual TSPO-PET signals. In consideration of cellular tracer uptake and cell type abundance, tumor cells were the main contributor to TSPO enrichment in glioblastoma; however, proteomics identified potential PET targets highly specific for TAMs. Combining cellular tracer uptake measures with 3D histology facilitates precise allocation of PET signals and serves to validate emerging novel TAM-specific radioligands.

Authors: L. M. Bartos, S. V. Kirchleitner, Z. I. Kolabas, S. Quach, A. Beck, J. Lorenz, J. Blobner, S. A. Mueller, S. Ulukaya, L. Hoeher, I. Horvath, K. Wind-Mark, A. Holzgreve, V. C. Ruf, L. Gold, L. H. Kunze, S. T. Kunte, P. Beumers, H. E. Park, M. Antons, A. Zatcepin, N. Briel, L. Hoermann, R. Schaefer, D. Messerer, P. Bartenstein, M. J. Riemenschneider, S. Lindner, S. Ziegler, J. Herms, S. F. Lichtenthaler, A. Erturk, J. C. Tonn, L. von Baumgarten, N. L. Albert, M. Brendel

Date Published: 27th Oct 2023

Publication Type: Journal

Abstract (Expand)

The bone marrow in the skull is important for shaping immune responses in the brain and meninges, but its molecular makeup among bones and relevance in human diseases remain unclear. Here, we show that the mouse skull has the most distinct transcriptomic profile compared with other bones in states of health and injury, characterized by a late-stage neutrophil phenotype. In humans, proteome analysis reveals that the skull marrow is the most distinct, with differentially expressed neutrophil-related pathways and a unique synaptic protein signature. 3D imaging demonstrates the structural and cellular details of human skull-meninges connections (SMCs) compared with veins. Last, using translocator protein positron emission tomography (TSPO-PET) imaging, we show that the skull bone marrow reflects inflammatory brain responses with a disease-specific spatial distribution in patients with various neurological disorders. The unique molecular profile and anatomical and functional connections of the skull show its potential as a site for diagnosing, monitoring, and treating brain diseases.

Authors: Zeynep Ilgin Kolabas, Louis B Kuemmerle, Robert Perneczky, Benjamin Förstera, Selin Ulukaya, Mayar Ali, Saketh Kapoor, Laura M Bartos, Maren Büttner, Ozum Sehnaz Caliskan, Zhouyi Rong, Hongcheng Mai, Luciano Höher, Denise Jeridi, Muge Molbay, Igor Khalin, Ioannis K Deligiannis, Moritz Negwer, Kenny Roberts, Alba Simats, Olga Carofiglio, Mihail I Todorov, Izabela Horvath, Furkan Ozturk, Selina Hummel, Gloria Biechele, Artem Zatcepin, Marcus Unterrainer, Johannes Gnörich, Jay Roodselaar, Joshua Shrouder, Pardis Khosravani, Benjamin Tast, Lisa Richter, Laura Díaz-Marugán, Doris Kaltenecker, Laurin Lux, Ying Chen, Shan Zhao, Boris-Stephan Rauchmann, Michael Sterr, Ines Kunze, Karen Stanic, Vanessa W Y Kan, Simon Besson-Girard, Sabrina Katzdobler, Carla Palleis, Julia Schädler, Johannes C Paetzold, Sabine Liebscher, Anja E Hauser, Özgün Gökçe, Heiko Lickert, Hanno Steinke, Corinne Benakis, Christian Braun, Celia P Martinez-Jimenez, Katharina Buerger, Nathalie L Albert, Günter Höglinger, Johannes Levin, Christian Haass, Anna Kopczak, Martin Dichgans, Joachim Havla, Tania Kümpfel, Martin Kerschensteiner, Martina Schifferer, Mikael Simons, Arthur Liesz, Natalie Krahmer, Omer A Bayraktar, Nicolai Franzmeier, Nikolaus Plesnila, Suheda Erener, Victor G Puelles, Claire Delbridge, Harsharan Singh Bhatia, Farida Hellal, Markus Elsner, Ingo Bechmann, Benjamin Ondruschka, Matthias Brendel, Fabian J Theis, Ali Ertürk

Date Published: 17th Aug 2023

Publication Type: Journal

Abstract (Expand)

Spatial molecular profiling of complex tissues is essential to investigate cellular function in physiological and pathological states. However, methods for molecular analysis of large biological specimens imaged in 3D are lacking. Here, we present DISCO-MS, a technology that combines whole-organ/whole-organism clearing and imaging, deep-learning-based image analysis, robotic tissue extraction, and ultra-high-sensitivity mass spectrometry. DISCO-MS yielded proteome data indistinguishable from uncleared samples in both rodent and human tissues. We used DISCO-MS to investigate microglia activation along axonal tracts after brain injury and characterized early- and late-stage individual amyloid-beta plaques in a mouse model of Alzheimer's disease. DISCO-bot robotic sample extraction enabled us to study the regional heterogeneity of immune cells in intact mouse bodies and aortic plaques in a complete human heart. DISCO-MS enables unbiased proteome analysis of preclinical and clinical tissues after unbiased imaging of entire specimens in 3D, identifying diagnostic and therapeutic opportunities for complex diseases. VIDEO ABSTRACT.

Authors: H. S. Bhatia, A. D. Brunner, F. Ozturk, S. Kapoor, Z. Rong, H. Mai, M. Thielert, M. Ali, R. Al-Maskari, J. C. Paetzold, F. Kofler, M. I. Todorov, M. Molbay, Z. I. Kolabas, M. Negwer, L. Hoeher, H. Steinke, A. Dima, B. Gupta, D. Kaltenecker, O. S. Caliskan, D. Brandt, N. Krahmer, S. Muller, S. F. Lichtenthaler, F. Hellal, I. Bechmann, B. Menze, F. Theis, M. Mann, A. Erturk

Date Published: 22nd Dec 2022

Publication Type: Journal

Powered by
(v.1.15.0)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH