ADAM10-Mediated Ectodomain Shedding Is an Essential Driver of Podocyte Damage.

Abstract:

BACKGROUND: Podocytes embrace the glomerular capillaries with foot processes, which are interconnected by a specialized adherens junction to ultimately form the filtration barrier. Altered adhesion and loss are common features of podocyte injury, which could be mediated by shedding of cell-adhesion molecules through the regulated activity of cell surface-expressed proteases. A Disintegrin and Metalloproteinase 10 (ADAM10) is such a protease known to mediate ectodomain shedding of adhesion molecules, among others. Here we evaluate the involvement of ADAM10 in the process of antibody-induced podocyte injury. METHODS: Membrane proteomics, immunoblotting, high-resolution microscopy, and immunogold electron microscopy were used to analyze human and murine podocyte ADAM10 expression in health and kidney injury. The functionality of ADAM10 ectodomain shedding for podocyte development and injury was analyzed, in vitro and in vivo, in the anti-podocyte nephritis (APN) model in podocyte-specific, ADAM10-deficient mice. RESULTS: ADAM10 is selectively localized at foot processes of murine podocytes and its expression is dispensable for podocyte development. Podocyte ADAM10 expression is induced in the setting of antibody-mediated injury in humans and mice. Podocyte ADAM10 deficiency attenuates the clinical course of APN and preserves the morphologic integrity of podocytes, despite subepithelial immune-deposit formation. Functionally, ADAM10-related ectodomain shedding results in cleavage of the cell-adhesion proteins N- and P-cadherin, thus decreasing their injury-related surface levels. This favors podocyte loss and the activation of downstream signaling events through the Wnt signaling pathway in an ADAM10-dependent manner. CONCLUSIONS: ADAM10-mediated ectodomain shedding of injury-related cadherins drives podocyte injury.

SEEK ID: http://lmmeisd-2.srv.mwn.de/publications/22

PubMed ID: 33785583

Projects: Published Datasets

Publication type: Journal

Journal: J Am Soc Nephrol

Citation: J Am Soc Nephrol. 2021 Jun 1;32(6):1389-1408. doi: 10.1681/ASN.2020081213. Epub 2021 Mar 30.

Date Published: 1st Jun 2021

Registered Mode: by PubMed ID

Authors: M. Sachs, S. Wetzel, J. Reichelt, W. Sachs, L. Schebsdat, S. Zielinski, L. Seipold, L. Heintz, S. A. Muller, O. Kretz, M. Lindenmeyer, T. Wiech, T. B. Huber, R. Lullmann-Rauch, S. F. Lichtenthaler, P. Saftig, C. Meyer-Schwesinger

help Submitter
Activity

Views: 150

Created: 5th Jul 2024 at 09:30

help Tags

This item has not yet been tagged.

help Attributions

None

Powered by
(v.1.15.0)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH