Studies

What is a Study?
18 Studies visible to you, out of a total of 18

Signal peptide peptidase (SPP) and the four homologous SPP-like (SPPL) proteases constitute a family of intramembrane aspartyl proteases with selectivity for type II-oriented transmembrane segments. Here, we have analysed the physiological function of the orphan protease SPPL2c, previously considered to represent a non-expressed pseudogene. We identified proteolytic activity of SPPL2c towards selected tail-anchored proteins. Despite shared ER localization, SPPL2c and SPP exhibit distinct, though ...

Submitter: Rainer Malik

Investigation: Proteomics

Assays: Shotgun proteomics

Signal peptide peptidase-like 2c (SPPL2c) is the only member of the GxGD type intramembrane-cleaving aspartyl proteases that so far has not been assigned any substrates and thus its capability of proteolysis and its physiological function remain enigmatic. Based on a surprisingly high expression of SPPL2c in elongated spermatids we applied proteomics on a cellular model system with ectopic expression of SPPL2c and identified a variety of candidate substrates. The majority of these candidate ...

Submitter: Rainer Malik

Investigation: Proteomics

Assays: Shotgun proteomics

No description specified

Submitter: Rainer Malik

Investigation: Proteomics

Assays: Shotgun proteomics

A disintegrin and metalloprotease 10 (ADAM10) is essential for embryonic development and impacts on diseases such as cancer, Alzheimer’s and inflammatory diseases. ADAM10 is a ‘molecular scissor’ that proteolytically cleaves the extracellular region from over 100 substrates, including Notch, amyloid precursor protein, cadherins, growth factors and chemokines. ADAM10 was recently proposed to function as six distinct scissors with different substrates, depending on its association with one of six ...

Submitter: Rainer Malik

Investigation: Proteomics

Assays: Shotgun proteomics

Microglial dysfunction is a key pathological feature of Alzheimer´s disease (AD), but little is known about proteome-wide changes in microglia during the course of AD pathogenesis and their consequences for microglial function. Here, we performed an in-depth proteomic characterization of microglia in two AD mouse models, the overexpression APPPS1 and the knock-in AppNL-G-F (APP-KI) model. Proteome changes were followed from pre-deposition to early, middle and advanced stages of amyloid plaque ...

Submitter: Rainer Malik

Investigation: Proteomics

Assays: Shotgun proteomics

Lewy body (LB) pathology and loss of dopaminergic neurons are imprints of Parkinson’s disease (PD). LBs are mainly comprised of alpha-Synuclein (Dijkstra et al., 2014). Strolling detection of LBs in brain regions contribute to progressive construct of PD pathology to which molecular mechanisms are not clear (H. Braak & Del Tredici, 2017). Two key facets of LB formation are protein aggregation via misfolding and transmission of misfoldled proteins to various brain regions, eventually causing ...

Submitter: Rainer Malik

Investigation: Proteomics

Assays: Shotgun proteomics, Shotgun proteomics

o study mechanisms of neurodegenerative diseases, neuronal cell lines are important model systems and are often differentiated into postmitotic neuron-like cells to resemble more closely primary neurons obtained from brains. One such cell line is the Lund Human Mesencephalic (LUHMES) cell line which can be differentiated into dopamine-like neurons and is frequently used to study mechanisms of Parkinson’s disease (PD) and neurotoxicity. Neuronal differentiation of LUHMES cells is commonly verified ...

Submitter: Rainer Malik

Investigation: Proteomics

Assays: Shotgun proteomics

Powered by
(v.1.15.0)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH