Publications

What is a Publication?
2 Publications visible to you, out of a total of 2

Abstract (Expand)

The bone marrow in the skull is important for shaping immune responses in the brain and meninges, but its molecular makeup among bones and relevance in human diseases remain unclear. Here, we show that the mouse skull has the most distinct transcriptomic profile compared with other bones in states of health and injury, characterized by a late-stage neutrophil phenotype. In humans, proteome analysis reveals that the skull marrow is the most distinct, with differentially expressed neutrophil-related pathways and a unique synaptic protein signature. 3D imaging demonstrates the structural and cellular details of human skull-meninges connections (SMCs) compared with veins. Last, using translocator protein positron emission tomography (TSPO-PET) imaging, we show that the skull bone marrow reflects inflammatory brain responses with a disease-specific spatial distribution in patients with various neurological disorders. The unique molecular profile and anatomical and functional connections of the skull show its potential as a site for diagnosing, monitoring, and treating brain diseases.

Authors: Zeynep Ilgin Kolabas, Louis B Kuemmerle, Robert Perneczky, Benjamin Förstera, Selin Ulukaya, Mayar Ali, Saketh Kapoor, Laura M Bartos, Maren Büttner, Ozum Sehnaz Caliskan, Zhouyi Rong, Hongcheng Mai, Luciano Höher, Denise Jeridi, Muge Molbay, Igor Khalin, Ioannis K Deligiannis, Moritz Negwer, Kenny Roberts, Alba Simats, Olga Carofiglio, Mihail I Todorov, Izabela Horvath, Furkan Ozturk, Selina Hummel, Gloria Biechele, Artem Zatcepin, Marcus Unterrainer, Johannes Gnörich, Jay Roodselaar, Joshua Shrouder, Pardis Khosravani, Benjamin Tast, Lisa Richter, Laura Díaz-Marugán, Doris Kaltenecker, Laurin Lux, Ying Chen, Shan Zhao, Boris-Stephan Rauchmann, Michael Sterr, Ines Kunze, Karen Stanic, Vanessa W Y Kan, Simon Besson-Girard, Sabrina Katzdobler, Carla Palleis, Julia Schädler, Johannes C Paetzold, Sabine Liebscher, Anja E Hauser, Özgün Gökçe, Heiko Lickert, Hanno Steinke, Corinne Benakis, Christian Braun, Celia P Martinez-Jimenez, Katharina Buerger, Nathalie L Albert, Günter Höglinger, Johannes Levin, Christian Haass, Anna Kopczak, Martin Dichgans, Joachim Havla, Tania Kümpfel, Martin Kerschensteiner, Martina Schifferer, Mikael Simons, Arthur Liesz, Natalie Krahmer, Omer A Bayraktar, Nicolai Franzmeier, Nikolaus Plesnila, Suheda Erener, Victor G Puelles, Claire Delbridge, Harsharan Singh Bhatia, Farida Hellal, Markus Elsner, Ingo Bechmann, Benjamin Ondruschka, Matthias Brendel, Fabian J Theis, Ali Ertürk

Date Published: 17th Aug 2023

Publication Type: Journal

Abstract (Expand)

For optimal design of anti-amyloid-β (Aβ) and anti-tau clinical trials, we need to better understand the pathophysiological cascade of Aβ- and tau-related processes. Therefore, we set out to investigate how Aβ and soluble phosphorylated tau (p-tau) relate to the accumulation of tau aggregates assessed with PET and subsequent cognitive decline across the Alzheimer's disease (AD) continuum. Using human cross-sectional and longitudinal neuroimaging and cognitive assessment data, we show that in early stages of AD, increased concentration of soluble CSF p-tau is strongly associated with accumulation of insoluble tau aggregates across the brain, and CSF p-tau levels mediate the effect of Aβ on tau aggregation. Further, higher soluble p-tau concentrations are mainly related to faster accumulation of tau aggregates in the regions with strong functional connectivity to individual tau epicenters. In this early stage, higher soluble p-tau concentrations is associated with cognitive decline, which is mediated by faster increase of tau aggregates. In contrast, in AD dementia, when Aβ fibrils and soluble p-tau levels have plateaued, cognitive decline is related to the accumulation rate of insoluble tau aggregates. Our data suggest that therapeutic approaches reducing soluble p-tau levels might be most favorable in early AD, before widespread insoluble tau aggregates.

Authors: Alexa Pichet Binette, Nicolai Franzmeier, Nicola Spotorno, Michael Ewers, Matthias Brendel, Davina Biel, Olof Strandberg, Shorena Janelidze, Sebastian Palmqvist, Niklas Mattsson-Carlgren, Ruben Smith, Erik Stomrud, Rik Ossenkoppele, Oskar Hansson

Date Published: 4th Nov 2022

Publication Type: Journal

Powered by
(v.1.15.0)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH