Publications

What is a Publication?
39 Publications visible to you, out of a total of 39

Abstract (Expand)

Astrocytes are a viable source for generating new neurons via direct conversion. However, little is known about the neurogenic cascades triggered in astrocytes from different regions of the CNS. Here, we examine the transcriptome induced by the proneural factors Ascl1 and Neurog2 in spinal cord-derived astrocytes in vitro. Each factor initially elicits different neurogenic programs that later converge to a V2 interneuron-like state. Intriguingly, patch sequencing (patch-seq) shows no overall correlation between functional properties and the transcriptome of the heterogenous induced neurons, except for K-channels. For example, some neurons with fully mature electrophysiological properties still express astrocyte genes, thus calling for careful molecular and functional analysis. Comparing the transcriptomes of spinal cord- and cerebral-cortex-derived astrocytes reveals profound differences, including developmental patterning cues maintained in vitro. These relate to the distinct neuronal identity elicited by Ascl1 and Neurog2 reflecting their developmental functions in subtype specification of the respective CNS region.

Authors: J Kempf, K Knelles, B A Hersbach, D Petrik, T Riedemann, V Bednarova, A Janjic, T Simon-Ebert, W Enard, P Smialowski, M Götz, G Masserdotti

Date Published: 20th Jul 2021

Publication Type: Journal

Abstract (Expand)

In the present study, we have demonstrated that extracellular vesicles (EVs) derived from cerebrospinal fluid (CSF) represent a promising source for the identification of a novel miRNA signatures in Parkinson's disease (PD). Using next‐generation small‐RNA sequencing, we present for the first time the complete and quantitative microRNAome of EVs isolated from human CSF of PD and age‐correlated controls (CTR). In parallel, we performed CSF proteomic profiling of overlapping patient cohorts, which revealed the deregulation of disease‐relevant pathways similar to the ones obtained with the parallel miRNA analyses, supporting the results for the identified signature.

Authors: Lucas Caldi Gomes, Anna-Elisa Roser, Gaurav Jain, Tonatiuh Pena Centeno, Fabian Maass, Lukas Schilde, Caroline May, Anja Schneider, Mathias Bähr, Katrin Marcus, André Fischer, Paul Lingor

Date Published: 5th Apr 2021

Publication Type: Journal

Abstract (Expand)

Autophagy deficiency in fed conditions leads to the formation of protein inclusions highlighting the contribution of this lysosomal delivery route to cellular proteostasis. Selective autophagy pathways exist that clear accumulated and aggregated ubiquitinated proteins. Receptors for this type of autophagy (aggrephagy) include p62, NBR1, TOLLIP, and OPTN, which possess LC3-interacting regions and ubiquitin-binding domains (UBDs), thus working as a bridge between LC3/GABARAP proteins and ubiquitinated substrates. However, the identity of aggrephagy substrates and the redundancy of aggrephagy and related UBD-containing receptors remains elusive. Here, we combined proximity labeling and organelle enrichment with quantitative proteomics to systematically map the autophagic degradome targeted by UBD-containing receptors under basal and proteostasis-challenging conditions in human cell lines. We identified various autophagy substrates, some of which were differentially engulfed by autophagosomal and endosomal membranes via p62 and TOLLIP, respectively. Overall, this resource will allow dissection of the proteostasis contribution of autophagy to numerous individual proteins.

Authors: Susanne Zellner, Martina Schifferer, Christian Behrends

Date Published: 18th Mar 2021

Publication Type: Journal

Abstract (Expand)

Astrocyte-to-neuron conversion is a promising avenue for neuronal replacement therapy. Neurons are particularly dependent on mitochondrial function, but how well mitochondria adapt to the new fate is unknown. Here, we determined the comprehensive mitochondrial proteome of cortical astrocytes and neurons, identifying about 150 significantly enriched mitochondrial proteins for each cell type, including transporters, metabolic enzymes, and cell-type-specific antioxidants. Monitoring their transition during reprogramming revealed late and only partial adaptation to the neuronal identity. Early dCas9-mediated activation of genes encoding mitochondrial proteins significantly improved conversion efficiency, particularly for neuron-enriched but not astrocyte-enriched antioxidant proteins. For example, Sod1 not only improves the survival of the converted neurons but also elicits a faster conversion pace, indicating that mitochondrial proteins act as enablers and drivers in this process. Transcriptional engineering of mitochondrial proteins with other functions improved reprogramming as well, demonstrating a broader role of mitochondrial proteins during fate conversion.

Authors: Gianluca L Russo, Giovanna Sonsalla, Poornemaa Natarajan, Christopher T Breunig, Giorgia Bulli, Juliane Merl-Pham, Sabine Schmitt, Jessica Giehrl-Schwab, Florian Giesert, Martin Jastroch, Hans Zischka, Wolfgang Wurst, Stefan H Stricker, Stefanie M Hauck, Giacomo Masserdotti, Magdalena Götz

Date Published: 4th Mar 2021

Publication Type: Journal

Abstract (Expand)

Neural stem cells (NSCs) in the adult brain transit from the quiescent state to proliferation to produce new neurons. The mechanisms regulating this transition in freely behaving animals are, however, poorly understood. We customized in vivo imaging protocols to follow NSCs for several days up to months, observing their activation kinetics in freely behaving mice. Strikingly, NSC division is more frequent during daylight and is inhibited by darkness-induced melatonin signaling. The inhibition of melatonin receptors affected intracellular Ca<sup>2+</sup> dynamics and promoted NSC activation. We further discovered a Ca<sup>2+</sup> signature of quiescent versus activated NSCs and showed that several microenvironmental signals converge on intracellular Ca<sup>2+</sup> pathways to regulate NSC quiescence and activation. In vivo NSC-specific optogenetic modulation of Ca<sup>2+</sup> fluxes to mimic quiescent-state-like Ca<sup>2+</sup> dynamics in freely behaving mice blocked NSC activation and maintained their quiescence, pointing to the regulatory mechanisms mediating NSC activation in freely behaving animals.

Authors: Archana Gengatharan, Sarah Malvaut, Alina Marymonchyk, Majid Ghareghani, Marina Snapyan, Judith Fischer-Sternjak, Jovica Ninkovic, Magdalena Götz, Armen Saghatelyan

Date Published: 4th Feb 2021

Publication Type: Journal

Abstract (Expand)

Cortical pathology contributes to chronic cognitive impairment of patients suffering from the neuroinflammatory disease multiple sclerosis (MS). How such gray matter inflammation affects neuronal structure and function is not well understood. In the present study, we use functional and structural in vivo imaging in a mouse model of cortical MS to demonstrate that bouts of cortical inflammation disrupt cortical circuit activity coincident with a widespread, but transient, loss of dendritic spines. Spines destined for removal show local calcium accumulations and are subsequently removed by invading macrophages or activated microglia. Targeting phagocyte activation with a new antagonist of the colony-stimulating factor 1 receptor prevents cortical synapse loss. Overall, our study identifies synapse loss as a key pathological feature of inflammatory gray matter lesions that is amenable to immunomodulatory therapy.

Authors: Mehrnoosh Jafari, Adrian-Minh Schumacher, Nicolas Snaidero, Emily M Ullrich Gavilanes, Tradite Neziraj, Virág Kocsis-Jutka, Daniel Engels, Tanja Jürgens, Ingrid Wagner, Juan Daniel Flórez Weidinger, Stephanie S Schmidt, Eduardo Beltrán, Nellwyn Hagan, Lisa Woodworth, Dimitry Ofengeim, Joseph Gans, Fred Wolf, Mario Kreutzfeldt, Ruben Portugues, Doron Merkler, Thomas Misgeld, Martin Kerschensteiner

Date Published: 25th Jan 2021

Publication Type: Journal

Abstract (Expand)

Rationale: Arterial inflammation manifested as atherosclerosis is the leading cause of mortality worldwide. Genome-wide association studies have identified a prominent role of HDAC (histone deacetylase)-9 in atherosclerosis and its clinical complications including stroke and myocardial infarction. Objective: To determine the mechanisms linking HDAC9 to these vascular pathologies and explore its therapeutic potential for atheroprotection. Methods and Results: We studied the effects of Hdac9 on features of plaque vulnerability using bone marrow reconstitution experiments and pharmacological targeting with a small molecule inhibitor in hyperlipidemic mice. We further used 2-photon and intravital microscopy to study endothelial activation and leukocyte-endothelial interactions. We show that hematopoietic Hdac9 deficiency reduces lesional macrophage content while increasing fibrous cap thickness thus conferring plaque stability. We demonstrate that HDAC9 binds to IKK (inhibitory kappa B kinase)-α and β, resulting in their deacetylation and subsequent activation, which drives inflammatory responses in both macrophages and endothelial cells. Pharmacological inhibition of HDAC9 with the class IIa HDAC inhibitor TMP195 attenuates lesion formation by reducing endothelial activation and leukocyte recruitment along with limiting proinflammatory responses in macrophages. Transcriptional profiling using RNA sequencing revealed that TMP195 downregulates key inflammatory pathways consistent with inhibitory effects on IKKβ. TMP195 mitigates the progression of established lesions and inhibits the infiltration of inflammatory cells. Moreover, TMP195 diminishes features of plaque vulnerability and thereby enhances plaque stability in advanced lesions. Ex vivo treatment of monocytes from patients with established atherosclerosis reduced the production of inflammatory cytokines including IL (interleukin)-1β and IL-6. Conclusions: Our findings identify HDAC9 as a regulator of atherosclerotic plaque stability and IKK activation thus providing a mechanistic explanation for the prominence of HDAC9 as a vascular risk locus in genome-wide association studies. Its therapeutic inhibition may provide a potent lever to alleviate vascular inflammation.

Authors: Yaw Asare, Thomas A Campbell-James, Yury Bokov, Lydia Luya Yu, Matthias Prestel, Omar El Bounkari, Stefan Roth, Remco T A Megens, Tobias Straub, Kyra Thomas, Guangyao Yan, Melanie Schneider, Natalie Ziesch, Steffen Tiedt, Carlos Silvestre-Roig, Quinte Braster, Yishu Huang, Manuela Schneider, Rainer Malik, Christof Haffner, Arthur Liesz, Oliver Soehnlein, Jürgen Bernhagen, Martin Dichgans

Date Published: 28th Aug 2020

Publication Type: Journal

Powered by
(v.1.15.0)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH