Publications

What is a Publication?
2 Publications visible to you, out of a total of 2

Abstract (Expand)

Oxytocin-expressing paraventricular hypothalamic neurons (PVN<sup>OT</sup> neurons) integrate afferent signals from the gut, including cholecystokinin (CCK), to adjust whole-body energy homeostasis. However, the molecular underpinnings by which PVN<sup>OT</sup> neurons orchestrate gut-to-brain feeding control remain unclear. Here, we show that mice undergoing selective ablation of PVN<sup>OT</sup> neurons fail to reduce food intake in response to CCK and develop hyperphagic obesity on a chow diet. Notably, exposing wild-type mice to a high-fat/high-sugar (HFHS) diet recapitulates this insensitivity toward CCK, which is linked to diet-induced transcriptional and electrophysiological aberrations specifically in PVN<sup>OT</sup> neurons. Restoring OT pathways in diet-induced obese (DIO) mice via chemogenetics or polypharmacology sufficiently re-establishes CCK's anorexigenic effects. Last, by single-cell profiling, we identify a specialized PVN<sup>OT</sup> neuronal subpopulation with increased κ-opioid signaling under an HFHS diet, which restrains their CCK-evoked activation. In sum, we document a (patho)mechanism by which PVN<sup>OT</sup> signaling uncouples a gut-brain satiation pathway under obesogenic conditions.

Authors: Tim Gruber, Franziska Lechner, Cahuê Murat, Raian E Contreras, Eva Sanchez-Quant, Viktorian Miok, Konstantinos Makris, Ophélia Le Thuc, Ismael González-García, Elena García-Clave, Ferdinand Althammer, Quirin Krabichler, Lisa M DeCamp, Russell G Jones, Dominik Lutter, Rhiannan H Williams, Paul T Pfluger, Timo D Müller, Stephen C Woods, John Andrew Pospisilik, Celia P Martinez-Jimenez, Matthias H Tschöp, Valery Grinevich, Cristina Garcia-Caceres

Date Published: 31st Oct 2023

Publication Type: Journal

Abstract (Expand)

Hypothalamic astrocytes are particularly affected by energy-dense food consumption. How the anatomical location of these glial cells and their spatial molecular distribution in the arcuate nucleus of the hypothalamus (ARC) determine the cellular response to a high caloric diet remains unclear. In this study, we investigated their distinctive molecular responses following exposure to a high-fat high-sugar (HFHS) diet, specifically in the ARC. Using RNA sequencing and proteomics, we showed that astrocytes have a distinct transcriptomic and proteomic profile dependent on their anatomical location, with a major proteomic reprogramming in hypothalamic astrocytes. By ARC single-cell sequencing, we observed that a HFHS diet dictates time- and cell- specific transcriptomic responses, revealing that astrocytes have the most distinct regulatory pattern compared to other cell types. Lastly, we topographically and molecularly characterized astrocytes expressing glial fibrillary acidic protein and/or aldehyde dehydrogenase 1 family member L1 in the ARC, of which the abundance was significantly increased, as well as the alteration in their spatial and molecular profiles, with a HFHS diet. Together, our results provide a detailed multi-omics view on the spatial and temporal changes of astrocytes particularly in the ARC during different time points of adaptation to a high calorie diet.

Authors: Luiza Maria Lutomska, Viktorian Miok, Natalie Krahmer, Ismael González García, Tim Gruber, Ophélia Le Thuc, Cahuê Db Murat, Beata Legutko, Michael Sterr, Gesine Saher, Heiko Lickert, Timo D Müller, Siegfried Ussar, Matthias H Tschöp, Dominik Lutter, Cristina Garcia-Caceres

Date Published: 8th Jul 2022

Publication Type: Journal

Powered by
(v.1.15.0)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH