Data files

What is a Data file?
81 Data files visible to you, out of a total of 81

Lewy body (LB) pathology and loss of dopaminergic neurons are imprints of Parkinson’s disease (PD). LBs are mainly comprised of alpha-Synuclein (Dijkstra et al., 2014). Strolling detection of LBs in brain regions contribute to progressive construct of PD pathology to which molecular mechanisms are not clear (H. Braak & Del Tredici, 2017). Two key facets of LB formation are protein aggregation via misfolding and transmission of misfoldled proteins to various brain regions, eventually causing ...

To study mechanisms of neurodegenerative diseases, neuronal cell lines are important model systems and are often differentiated into postmitotic neuron-like cells to resemble more closely primary neurons obtained from brains. One such cell line is the Lund Human Mesencephalic (LUHMES) cell line which can be differentiated into dopamine-like neurons and is frequently used to study mechanisms of Parkinson’s disease (PD) and neurotoxicity. Neuronal differentiation of LUHMES cells is commonly verified ...

To understand how cells communicate with each other, it is essential to define the cellular secretome, a collection of proteins including soluble secreted, unconventionally secreted and proteolytically-shed proteins. Quantitative methodologies to decipher the secretome are challenging, due to the requirement of large cell numbers and abundant serum proteins that interfere with the detection of low-abundant cellular secretome proteins. Here, we have use the highe perfomance ...

To understand how cells communicate with each other, it is essential to define the cellular secretome, a collection of proteins including soluble secreted, unconventionally secreted and proteolytically-shed proteins. Quantitative methodologies to decipher the secretome are challenging, due to the requirement of large cell numbers and abundant serum proteins that interfere with the detection of low-abundant cellular secretome proteins. Here, we miniaturized secretome analysis by developing the ...

Niemann-Pick type C disease is a rare neurodegenerative disorder mainly caused by mutations in Npc1, resulting in abnormal late endosomal/lysosomal lipid storage. Although microgliosis is a prominent pathological feature, direct consequences of NPC1 loss on microglial function remain uncharacterized. Previously, we have characterized microglial proteome alterations in the NPC1 KO mouse model (PXD019447). In order to investigate similar changes in humans, we have cultured monocyte derived macrophages ...

Niemann-Pick type C (NPC) disease is a rare neurodegenerative disorder mainly caused by autosomal recessive mutations in Npc1 which result in abnormal late endosomal/lysosomal lipid storage. Although microgliosis is one of the prominent pathological features, consequences of NPC1 loss on microglial function and disease outcome remain largely unknown. Here, we provide an in-depth characterization of microglial proteomic signatures and phenotypes in an NPC1-deficient (Npc1-/-) murine model. We ...

Niemann-Pick type C (NPC) disease is a rare neurodegenerative disorder mainly caused by autosomal recessive mutations in Npc1 which result in abnormal late endosomal/lysosomal lipid storage. Although microgliosis is one of the prominent pathological features, consequences of NPC1 loss on microglial function and disease outcome remain largely unknown. Here, we provide an in-depth characterization of microglial proteomic signatures and phenotypes in an NPC1-deficient (Npc1-/-) murine model. We ...

Powered by
(v.1.15.0)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH