Publications

What is a Publication?
3 Publications visible to you, out of a total of 3

Abstract (Expand)

Amyotrophic lateral sclerosis (ALS) is a debilitating motor neuron disease and lacks effective disease-modifying treatments. This study utilizes a comprehensive multiomic approach to investigate the early and sex-specific molecular mechanisms underlying ALS. By analyzing the prefrontal cortex of 51 patients with sporadic ALS and 50 control subjects, alongside four transgenic mouse models (C9orf72-, SOD1-, TDP-43-, and FUS-ALS), we have uncovered significant molecular alterations associated with the disease. Here, we show that males exhibit more pronounced changes in molecular pathways compared to females. Our integrated analysis of transcriptomes, (phospho)proteomes, and miRNAomes also identified distinct ALS subclusters in humans, characterized by variations in immune response, extracellular matrix composition, mitochondrial function, and RNA processing. The molecular signatures of human subclusters were reflected in specific mouse models. Our study highlighted the mitogen-activated protein kinase (MAPK) pathway as an early disease mechanism. We further demonstrate that trametinib, a MAPK inhibitor, has potential therapeutic benefits in vitro and in vivo, particularly in females, suggesting a direction for developing targeted ALS treatments.

Authors: Lucas Caldi Gomes, Sonja Hänzelmann, Fabian Hausmann, Robin Khatri, Sergio Oller, Mojan Parvaz, Laura Tzeplaeff, Laura Pasetto, Marie Gebelin, Melanie Ebbing, Constantin Holzapfel, Stefano Fabrizio Columbro, Serena Scozzari, Johanna Knöferle, Isabell Cordts, Antonia F Demleitner, Marcus Deschauer, Claudia Dufke, Marc Sturm, Qihui Zhou, Pavol Zelina, Emma Sudria-Lopez, Tobias B Haack, Sebastian Streb, Magdalena Kuzma-Kozakiewicz, Dieter Edbauer, R Jeroen Pasterkamp, Endre Laczko, Hubert Rehrauer, Ralph Schlapbach, Christine Carapito, Valentina Bonetto, Stefan Bonn, Paul Lingor

Date Published: 1st Jul 2024

Publication Type: Journal

Abstract (Expand)

Parkinson's disease (PD) is the second most common neurodegenerative disorder whose prevalence is rapidly increasing worldwide. The molecular mechanisms underpinning the pathophysiology of sporadic PD remain incompletely understood. Therefore, causative therapies are still elusive. To obtain a more integrative view of disease-mediated alterations, we investigated the molecular landscape of PD in human post-mortem midbrains, a region that is highly affected during the disease process.

Authors: Lucas Caldi Gomes, Ana Galhoz, Gaurav Jain, Anna-Elisa Roser, Fabian Maass, Eleonora Carboni, Elisabeth Barski, Christof Lenz, Katja Lohmann, Christine Klein, Mathias Bähr, André Fischer, Michael P Menden, Paul Lingor

Date Published: 28th Jan 2022

Publication Type: Journal

Abstract (Expand)

In the present study, we have demonstrated that extracellular vesicles (EVs) derived from cerebrospinal fluid (CSF) represent a promising source for the identification of a novel miRNA signatures in Parkinson's disease (PD). Using next‐generation small‐RNA sequencing, we present for the first time the complete and quantitative microRNAome of EVs isolated from human CSF of PD and age‐correlated controls (CTR). In parallel, we performed CSF proteomic profiling of overlapping patient cohorts, which revealed the deregulation of disease‐relevant pathways similar to the ones obtained with the parallel miRNA analyses, supporting the results for the identified signature.

Authors: Lucas Caldi Gomes, Anna-Elisa Roser, Gaurav Jain, Tonatiuh Pena Centeno, Fabian Maass, Lukas Schilde, Caroline May, Anja Schneider, Mathias Bähr, Katrin Marcus, André Fischer, Paul Lingor

Date Published: 5th Apr 2021

Publication Type: Journal

Powered by
(v.1.15.0)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH